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Abstract

In this work, we study some characteristics of sigmoidal
growth/decay functions that are solutions of dynamical sys-
tems. In addition, the studied dynamical systems have a re-
alization in terms of reaction networks that are closely related
to the Gompertzian and logistic type growth models. Apart
from the growing species, the studied reaction networks involve
an additional species interpreted as an environmental resource.
The reaction network formulation of the proposed models hints
for the intrinsic mechanism of the modeled growth process and
can be used for analyzing evolutionary measured data when
testing various appropriate models, especially when studying
growth processes in life sciences. The proposed reaction net-
work realization of Gompertz growth model can be interpreted
from the perspective of demographic and socio-economic sci-
ences. The reaction network approach clearly explains the in-
timate links between the Gompertz model and the Verhulst
logistic model. There are shown reversible reactions which com-
plete the already known non-reversible ones. It is also demon-
strated that the proposed approach can be applied in oscillating
processes and social-science events. The paper is richly illus-
trated with numerical computations and computer simulations
performed by algorithms using the computer algebra system
Mathematica.

Keywords:Dynamical growth models; Logistic model; Gompertz func-
tion; Bateman equations; Sigmoidal functions; Dynamical systems;
Reaction networks; Growth-decay models; Exponential growth-decay
reaction chain; Brusselator; Oregonator
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1 Introduction
Chemical reaction network theory is an area of Applied Mathematics
which describes the behavior of real chemical systems using mathe-
matical models. A chemical reaction network is defined by sets of
chemical species which react to form different sets of species which
happens with certain speed. The aim of this work is to explore the
behavior of the reactants in dependence of the rate of the reactions.
The mathematical modelling is a very useful and relevant way to study
the chemical reaction networks. Complex systems are typically too
expensive to simulate in finer detail. Hence, there is a need for mul-
tiscale models and corresponding computational algorithms that can
adaptively operate at the most coarse-grained level possible for com-
putational efficiency. The models, which we use for modelling, rely
on modelling assumptions which are the key factor for their appropri-
ateness. These assumptions can be made from observations and as in
most cases, are based on experimental data. We illustrate the method
of mathematical modelling which we apply in studying the dynamical
processes in B. We use "Gedankenexperiment" A to demonstrate the
modelling of Free-Fall Law and the process of searching a better model
which is our main goal in this work.
There are well-known reaction network realizations for a number of
dynamical growth models, such as saturation, logistic, epidemic, etc..
However, there is no such realization of Gompertz-Bateman model
with its reversible reaction. We discuss important links between the
Gompertz and the logistic model. We also propose several reaction
networks inducing dynamical models that generalize the Gompertzian
one and the Verhulst Differential model. We study the reaction when
the reactant is also the product of the reaction which is a modification
of the classical Verhulst model not seen in the literature before.

About the contents.
We focus our attention on studying dynamical growth/decay pro-

cesses in terms of reaction networks. The current work is structured
as follows:
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In Chapter 2, we consider basic reaction kinetics models, includ-
ing saturated and logistic growth/decay models. Besides the classical
study of growth functions, the relationship between growing and de-
caying species in a reaction is obtained as an idea that the product
of the reaction increases at the expense of the decaying reactant. We
study the Verhulst Logistic Differential model, extend it and general-
ized it.
In Chapter 3, we focus our attention on Gompertz Growth model
which is studied in details and extended to Gompertz-Bateman
Growth/Decay Model, its solutions and generalizations are shown.
In Chapter 4, we present some applications of reaction networks in
studying oscillating chemical reactions of the brusselator and the oreg-
onator.
One of the basic catalytic and autocatalytic reactions are extended
and some natural generalizations and modifications induced by the
proposed networks, are formulated and discussed. There is another
view of the Verhulst logistic growth model which differs from the clas-
sical study in [11] with modification of the species which is a catalyst
as species with a constant concentration. We apply the idea of chang-
ing the reaction’s equations when assuming that some of the reactants
are with a constant concentration through the reaction.

2 Reaction Kinetics

2.1 Modelling Saturated Growth/Decay

A main tool used in the analysis of chemical reaction networks is the
Law of Mass Action.

Law of Mass Action:

The rate of a reaction is proportional to the product of the con-
centrations of the reactants.

Using this law, it is obvious how to write the differential equations,
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which show the behavior of the concentrations of the reactants and the
products of the reactions over time.

The first and the most common chemical reaction, which we can
look at is the reaction:

U
kÐ→X

Here we have a transformation from the substance U to the substance
X with a constant rate k. From the Law of Mass Action, we can write
down the following system of differential equations:

{
x′ = ku

u′ = −ku
(1)

The solution x,u of system (1) can be easily found as:

u(t) = u(0)e−kt
x(t) = x(0) + u(0)(1 − e−kt)

The graphics shows saturation curve for x.

u[t]

x[t]

2 4 6 8 10
t

0.2

0.4

0.6

0.8

1.0

1.2
x(t),u(t)

Figure 1: The solution x,u of system (1)
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Reversible Reaction. Now, let us try to solve the case when the
reverse reaction is possible.

U
k1Ð⇀↽Ð
k2
X

It could be treated analogously. We have the system:

{
u′ = k2x − k1u

x′ = −k2x + k1u
(2)

The solution for u,x of the system (3) for u(0) = u0 and x(0) = x0 is:

u(t) = e−(k1+k2)t(k2u0−k1x0+e(k1+k2)tk1(u0+x0))
k1+k2

x(t) = e−(k1+k2)tk1x0+k2(u0−e−(k1+k2)tu0+x0)
k1+k2

(3)

and the behavior of the reactants will depend on the rates of the re-
actions k1 and k2. When the rate of the right reaction is bigger, the
solution becomes the one plotted on Figure 2. The opposite case is
shown on Figure 3:

u[t]

x[t]
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t

0.2

0.4

0.6

0.8

1.0

x(t),u(t)

Figure 2: The solution for x,u of system (3) when k1 > k2,k1 = 1.2, k2 =
0.8
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Figure 3: The solution for x,u of system (3) when k2 > k1, k1 = 0.8, k2 =
1.2

The relation between the rate constants, in this case, means that
while X grows, U decays. Note that the saturation growth process
has no lag phase. Growth processes with a lag phase are typical for
bio-chemical reactions involving functional proteins.

2.2 Modelling Logistic Growth/Decay

2.2.1 Simple Catalytic Reaction

The behavior with only one substrate which turns into another one is
simple and easy to predict. The more interesting reactions are those
that have more participating substances. Here the species X has the
role of a catalyst(a substance that causes or accelerates a chemical
reaction without being affected). It is a reactant and a product at the
same time. If it doesn’t occur in another reaction, it remains constant
throughout the reaction.

Consider the following autocatalytic reaction network:

X +U kÐ→X (4)
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we have the dynamical system:

{
x′ = 0

u′ = −kux
(5)

The solution of the system (5) is:

x(t) = C1 = const
u(t) = e−kC1tC2

where C1 and C2 are constants which depend on the initial condition
of the substances. Let the values at the time t = 0 are x(0) = x0 and
u(0) = u0. We have that C1 = x0 and C2 = u0:

x(t) = x0
u(t) = e−kx0tu0

We can see graphically the behavior of the solution at Figure 4. We
are assuming that we have the initial conditions x0 = 0.1 and u0 = 1 :

u[t]

x[t]

2 4 6 8 10
t

0.2

0.4

0.6

0.8

1.0

x(t),u(t)

Figure 4: The graphics of the solution x,u of the system (4).
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2.2.2 Reversible Catalytic Reaction

Now let us turn our attention to the situation when the reverse reaction
is possible. It could be treated in the same way as the non-reversible
reaction:

X +U k1Ð⇀↽Ð
k2
X

We will decompose the reaction into two different reactions:

X +U k1Ð→X

X
k2Ð→X +U

We have the dynamical system:

{
x′ = 0

u′ = −k1ux + k2x
(6)

The solution of this system (6) is:

x(t) = const = C1

u(t) = k2
k1

+ e−k1tC1C2

with x(0) = x0 and u(0) = u0:

x(t) = x0

u(t) = k2
k1

+ (u0 −
k2
k1

) e−x0k1t

Here the solutions depend on the values of k1, k2 and u0.
If k1u0 > k2, the function u(t) will decrease.
If k1u0 < k2, the function u(t) will increase.
Let us take again x0 = 0.1 for the initial conditions. If k1u0 > k2 we
have the same situation as in Figure 4:
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u[t]

x[t]
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x(t),u(t)

Figure 5: The graphics the of reaction when k1u0 > k2 and k1 = 1.5, k2 =
1.8, u0 = 2.

When the rate of the reverse reaction is bigger, we have the oppo-
site:

u[t]

x[t]
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0.5

0.6

x(t),u(t)

Figure 6: The graphics of the reaction when k2 > k1u0 and k1 = 2, k2 =
1.2, u0 = 0.5
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In the case k2 > k1u0 the solution grows and in this simple reaction
we observe bifurcation A.

2.2.3 Verhulst Logistic Differential Model

Non-Reversible Reaction. Let us look at the reactions that have
more products and the catalyst X replicates itself throughout the re-
action. We will focus our research on especially these special kind
of reactions - autocatalytic reactions. The autocatalytic reaction is a
process whereby a chemical is involved in its own production. Let us
look at the simple autocatalytic reaction:

U +X kÐ→X +X, (7)

where X and U are some substances and k is the rate constant of the re-
action. The reaction (7) induces a logistic growth model. [4] One more
possible interpretation could be the following: U transits(converts)
into X under the influence of the catalyst X itself. Using the Mass
Action Law, reaction network is written in terms of rate equations for
the concentrations u,x as follows [15]:

{
x′ = kux
u′ = −kux

(8)

The solution of the system is:

x(t) = C1 +
C1

−1 + ektC1+C1C2

u(t) = − C1

−1 + ektC1+C1C2
,

where C1 and C2 are constants which depend on the initial condition
of the substances. We can see graphically the behavior of reactants
on Figure 7. We are assuming that we have the initial conditions
x(0) = x0 = 0.1 and u(0) = u0 = 1.
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Figure 7: The graphics of the reaction when x(0) = x0 = 0.1, u0 = u0 = 1
and k = 1.

From the rate equations we can easily notice that:

u′ + x′ = 0

Let u(0) = u0 and x(0) = x0. Therefore u + x = u0 + x0 = const = a.
Substituting u = a − x in the equation for x, we have: x′ = kxu =
kx(a − x), which is the familiar Verhulst differential equation. It is
usually written with normalized constant k ∶= k

a as follows:

dx

dt
= k
a
x(a − x) = kx(1 − x

a
) (9)

This is the well-known Verhulst logistic differential model. [17]
The solution of (9) passing through the point (0, x(0) = a

2) is the
logistic sigmoidal function:

x0(t) =
a

1 + be−kt , b =
a − x0
x0

= 1

with a “jump” at the origin and asymptotes: limt→−∞ x0(t) = 0 and
limt→∞ x0(t) = a, where usually a = 1. In the general case where the
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“jump” is at given point γ, the logistic Verhulst function is written as:

xγ(k; t) =
1

1 + e−k(t−γ) (10)

The logistic function has an inflection at (γ, 12), its graph is centrally
symmetric and its slope at γ is κ = k

4 . The so-called lag time in the
Verhulst logistic model is tlag = γ− 2

k . The graph of the logistic function
is a sigmoid and looks like presented on Figure 8:

-10 -5 5 10
t

0.2

0.4

0.6

0.8

1.0

x(t)

Figure 8: Verhulst logistic function with γ = 0 and k = 2.

To extend the model, we will continue with studying the process
when the reversible reaction also occurs.

Reversible Reaction. When the reaction is also possible in the
reverse direction, we have:

U +X k1Ð⇀↽Ð
k2
X +X (11)

27



The case when the substance U is maintained at a constant concentra-
tion u is discussed in [11]. We will modify the reaction network (11)
with adding the species U at the right side of the reaction. In such
way, there is no need of an assumption for a constant concentration of
the species U, it comes naturally from the reaction:

U +X k1Ð⇀↽Ð
k2
X +X +U (12)

We will call and study further the operator induced by this reaction
as "Gompertz differential operator". [9] [10] The Law of Mass Action
applied to this reaction gives the rate of reaction as

x′ = k1ux − k2x2u (13)

From here, we have that the final nonzero steady state when tÐ→∞
will be:

x∞ = k1
k2

The zero steady state is unstable by inspection.
Next, we will focus on a more common situation - when the con-

centration of the reactant U is not constant in (11).
Using the Law of Mass Action,

{
x′ = k1.u.x − k2.x2

u′ = −k1.u.x + k2x2
(14)

The behavior of substances depends on the rate constants. Let us
look at some cases for the constants k1 and k2.

We have already looked at the case when the reaction is not reversible(k2 =
0), so we consider the following cases.

Case 1: When only the reverse reaction happens, k1 = 0 and the
reaction system looks different.

X +X k2Ð→U +X (15)
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We could look at it as the right reaction with the following equations:

{
x′ = −k2.x2

u′ = k2.x2

The solution is:

x(t) = x0
k2tx0+1

u(t) = u0 + x0 − x0
1+k2tx0

(16)

In this case, the equations for x and u are exchanged and the graph
will look like:

u[t]

x[t]

2 4 6 8 10
t

0.2

0.4

0.6

0.8

1.0

x(t),u(t)

Figure 9: The graphics of the reaction (15)when k1 = 0, k2 = 1.2.

Case 2: In the case when k1 > k2 we have the same graphics as
the previous models, shown on Figure 7.
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u[t]

x[t]
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x(t),u(t)

Figure 10: Time evolution of the reactants in the case k1 > k2 where
k1 = 1.2, k2 = 0.8

Case 3: Another case, which is needed to be shown, is the case,
when the reversible reaction happens with higher rate, i.e. k1 < k2.

u[t]

x[t]

2 4 6 8 10
t

0.2

0.4

0.6

0.8

1.0

x(t),u(t)

Figure 11: Time evolution of the reactants in the case k1 < k2 where
k1 = 0.8, k2 = 1.2
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Finally, we can solve the system implied by the reaction network
U +X k1Ð⇀↽Ð

k2
X +X exactly for the concentrations of X and U. We have:

x(t) = ek1C1(t+C2)k1C1

−1 + ek1C1(t+C2)(k1 + k2)
;

u(t) = −1 + ek1C1(t+C2)C1

−1 + ek1C1(t+C2)(k1 + k2)
,

where C1 and C2 are constants.
Suppose that besides the reaction (17) we have one more reaction

in the system where X is used up in the production of W([11]):

U +X k1Ð⇀↽Ð
k2
X +X +U

V +X k3Ð→W
(17)

Again, if we assume that V is with a constant concentration this leads
us to the reaction where V is a catalyst and:

V +X k3Ð→W + V

The solutions and the conclusions we can make for X don’t differ from
these made in [11]. We have:

x′ = k1ux − k2x2u − k3vx = (k1u − k3v)x − k2x2u

Here k1u is the unit production rate of x and k3v is the unit loss
rate. If k1u > k3v the steady state x = 0 is unstable and as t Ð→ +∞,
x = k1u−k3v

k2
which is stable. On the other hand, if k1u < k3v x = 0 is

stable which is not surprising since the inequality implies that the loss
rate is greater than the production rate.

The changes we have made with adding the reactant as a product
of the reactions didn’t affect the essential of the reactions studied in
[11], only gave more natural interpretation for the reactions.
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There are a lot of examples of chemical reactions, most commonly in
Biology, which have a reaction network of the form X +U Ð→X +X.
An interpretation of this reaction could be that a substance makes a
reaction with another substance and as a result of the interaction, the
first substance is either activated, doubled or just increased. Here, the
substance U can be interpreted as an activator or catalyst for the other
substance. We can see such reactions in the action of the enzymes.
An example is the enzyme trypsin - when the pancreas is stimulated
by cholecystokinin, the enzyme is then secreted into the first part of
the small intestine via the pancreatic duct. Once in the small intes-
tine, the enzyme enteropeptidase activates trypsinogen into trypsin
by proteolytic cleavage. Another popular example is that of the pri-
ons(infectious agents composed entirely of protein material) which at-
tack a protein, the prion converts the protein into itself. Only in this
case, there is no other substrate, which is released, because the prions
change the configuration and fold of the attacked molecule without
removing anything from it. They change only the spatial structure of
the protein.
In general, this reaction has an important part of the Biology science
and occurs in every system with proteolytic activation of enzymes.

Generalized Verhulst Logistic Differential Model. We can make
a generalization of the Verhulst Logistic Differential Model. Let us
look at the reaction in which we have n substances U which transits
and duplicate p substances X m + 1 times, where p ≥ 0 and p <m.
The reactions schemes will look like:

pX +
n

∑
i=1

Ui
k1Ð⇀↽Ð
k2
X +mX, for i = 1,2, . . . , n (18)

We obtain the following system:

⎧⎪⎪⎨⎪⎪⎩

x′ = k1xp∏n
j=1 uj − k2xm+1,

u′i = −k1xp∏n
j=1 uj + k2xm+1, i = 1,2, . . . , n
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From the system it is easy to see that for every i = 1,2, . . . , n

x′ + u′i = 0,

implying ui + x = ci, where ci > 0 are constants. We can obtain the
following equation for this general case:

x′ = k1xp
n

∏
i=1

(ci − x) − k2xm+1

We can easily obtain the non-reversible reaction by substituting k2 = 0
in 18 .

For p = n =m = 1 we have the already viewed Verhulst model. For
n =m, p = 1 and Ui = U for i = 1,2, . . . , n we have:

X + nU k1Ð⇀↽Ð
k2
X +mX

Let us look at the model when p = 2,n = 1,m = 2, U1 = U and
k2 = 0.

2X +U k1Ð→X + 2X (19)

We have the following system:

⎧⎪⎪⎨⎪⎪⎩

x′ = k1x2(c − x),
u′ = −k1x2(c − x)

(20)

Using the initial conditions x(0) = x0 and u(0) = u0 we find the con-
stant c = x0 + u0. For the graphic of the solution of the system 20:

33
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Figure 12: Time evolution of the reactants in the case k1 < k2 where
k1 = 0.8, k2 = 1.2

We focused on exactly this reaction because it participates in brus-
selator model which we will define in (4.1) and study thereafter.

A possible “biochemical” interpretation of model (18) is as follows:
the model is a one that describes the interaction between several
species, such as various types of foods and other environmental re-
sources (water, air, light, etc). In chemistry, it is unlikely that more
than three species interact simultaneously. However, in models related
to biology and social sciences, this restriction can be relaxed.

3 The Gompertz Growth Model:

3.1 Overview

We will focus our attention on the famous Gompertz growth model.
The Gompertz model is a type of mathematical model for a time series
and is named after Benjamin Gompertz (1779-1865). It is a sigmoid
function which describes growth as being slowest at the start and end
of a given time period.
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Figure 13: The sigmoid function serves as the basis of the Gompertz
function, in which initial growth is rapid followed by a levelling-off

It is the same sigmoid curve we saw when dealing with the Ver-
hulst Growth model. The function was originally designed to describe
human mortality but after that has been modified to be applied in
biology, with regards to detailing populations. The Gompertz growth
function is the solution of the dynamical equation for the classical
Gompertz model(where x = x(t)):

x′ = kx(c − lnx) (21)

The Gompertz model can be formulated in terms of a reaction net-
work. Let us look at a reaction network which consists of three species
and two reaction equations. Let us again have a "catalyst/resource" U
that declines and tends to 0 with t− > +∞, and a sigmoidally growing
species X catalyzed by species U. The two reactions determine the in-
dependent behavior of the catalyst U from the catalyzed species X. We
could look at the species U as a first unit of the Bateman exponential
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decay chain:

U1
k1Ð→ P1

k2Ð→P2
k3Ð→ . . . knÐ→Pn . . .

kn+1Ð→Q (22)

We will focus our attention on a general class of growth-decay models
where the resource species is replaced by some consecutive species ap-
pearing further in the Bateman chain. An important advantage of the
proposed class of models is the prolonged lag phase of the sigmoidally
growing species X - a property often needed when fitting biological
data of growth-decay processes, studied in areas like microbiology,
marine ecology, tumor research, etc. [1], [5], [6], [14].
The classical Gompertz model with catalyst U and catalyzed species
X looks like:

U
k1Ð→P,

U +X kÐ→2X +U
(23)

For the rate of concentrations, we have the following system:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p′ = k1u
u′ = −k1u
x′ = kux

(24)

Let us assume the following initial conditions:

u(0) = u0 > 0, p(0) = p0 ≥ 0, x(0) = x0 > 0 (25)

Proposition 1: From (24) and (25) we can conclude the following
properties for the variables x,u ∈ [0,+∞]:

•
k

k1
u = c − lnx, c = k

k1
u0 + lnx0 (26)

36



• the variable x satisfies the classical Gompertz equation

Proof. Let us ignore the equation for p from (24). Then we have

u′ = k1u,x′ = kux

Therefore,

u′

k1
+ x′

kx
= 0,

Ô⇒ ( 1

k1
u + 1

k
lnx) = const = b,

Ô⇒ 1

k1
u = b − 1

k
lnx

From here, when we multiply both sides by k and use the initial con-
ditions, we get (26).
Substituting u from (26) in the equation x′ = kux, we obtain the fa-
miliar Gompertz differential equation (21)

x′ = k1x(c − lnx), x(0) = x0 (27)

for the concentration x of the growth species X. We assume that
limt→∞ x = 1 determines the constant c as c = 0. The solution of
the equation (27) is the familiar Gompertz function

x(t) = xe−k1t0 (28)

The graph of the solution x = x(t) is shown on Figure 14
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Figure 14: The graphic of the Gompertz function for k1 = 0.5 and
k1 = 5, x0 = 0.1

3.2 A Gompertz-Bateman Growth/Decay Model

Let us look at the classical Gompertz model including reactions be-
tween species U, X and P (23). It is easy to see that the evolution of
species U does not depend on species X. It is shown mathematically in
(24). Comparing this model with Verhulst Logistic Model, we can see
that there the species U vanishes as a catalyst, so species X uses U as
a resource and the two species are strongly connected. Differently, in
the Gompertz model X does not influence the (bio)mass of U during
the process of reproduction, that is X does not consume U as food or
resource but uses U merely as a catalyst. The reaction U

k1Ð→P says
that at time moment t0 a concentration quantity u0 instantly appears
in the environment of the growing species X and the process immedi-
ately starts. Such an instant appearance of U, thereby homogeneously
distributed in the volume, seems not very realistic. The more realistic
view of the process will be that the catalyst species arrives smoothly
in time in the form of a wave, possibly starting from an arbitrarily
small value greater or equal to zero. This scenario is possible if the
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initial species U changes to another species or a set of other species
smoothly after a couple of reactions and then the new species partic-
ipate in the reaction with X as a catalyst. The Bateman chain (22)
suggests that, instead of the first species U in the chain, we may use
some species next in the chain to play the role of a catalyst for the
growing species X. We will call the m-th component of the Bateman
chain for the catalytic reaction with X the Gompertz-Bateman model
of order m.

U
kmÐ→Pm

km+1Ð→Pm+1
Pm +X kÐ→2X + Pm

We will focus our attention on the Gompertz-Bateman model of order
1 [10]:

U
k1Ð→P1

k2Ð→P2

P1 +X
kÐ→2X + P1

(29)

Let for briefness denote P1≡P . As usually, assume that species U, P
and X are homogeneously distributed in a fixed volume and denote
their concentrations (masses) respectively by u, p and x. The reaction
(29) implies the following dynamical system:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u′ = −k1u
p′ = k1u − k2p
x′ = kxp

(30)

Let us assume the following initial conditions:

u(0) = u0 > 0;p(0) = p0 ≥ 0, x(0) = x0 > 0 (31)

Proposition 2: [10] From (30) and (31) we can conclude the following
properties for the variables x,u ∈ [0,+∞]:

k

k2
(p + u) = c − lnx, c = k

k2
(u0 + p0) + lnx0 (32)
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Proof. From the equation in (30) we notice that:

u′ + p′ = −k2p = −k2
x′

kx

Ô⇒ (u + p)′ = −k2 (
1

k
lnx)

′

Ô⇒ u + p + k2
1

k
lnx = const = C1

Ô⇒ k

k2
(p + u) = c − lnx

Using the initial conditions from (31) we obtained the desired rela-
tionship.

Reversible Reaction. In addition to the non-reversible case (29)
considered in [10], let us assume that the reversible reaction is also
possible with some rate constant l and we have the following system:

U
k1Ð→P k2Ð→P2

P +X k⇌
l
2X + P

(33)

The reactions (33) implies the following dynamical system:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u′ = −k1u
p′ = k1u − k2p

x′ = kxp − lx2p
(34)

Let us have the same initial conditions.

u(0) = u0 > 0;p(0) = p0 ≥ 0, x(0) = x0 > 0 (35)

Then, we can conclude the following relations between the variables
x,u ∈ [0,+∞]:
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Proposition 2*:
k
k2
(u + p) = c − ln(x) + ln(k − lx),

c = k
k2
(u0 + p0) + ln(x0) − ln(k − lx0)

(36)

Proof. From the equation in (34) we notice that:

u′ + p′ = −k2p = −k2
x′

kx − lx2

Ô⇒ (u + p)′ = −k2x′ (
1

kx
+ l

k

1

k − lx)

Ô⇒ (u + p)′ = (−k2
k
lnx + k2

k
ln (k − lx))

′

Ô⇒ u + p = c1 −
k2
k
lnx + k2

k
ln (k − lx)

Ô⇒ k

k2
(u + p) = c − lnx + ln (k − lx)

,where c1 = const. Using the initial conditions from (35) we obtained
the desired relationship.

3.3 Solutions to Gompertz-Bateman Growth/Decay
Model of Order 1

We will find the exact solutions for the variables u, p and x using the
dynamical system (30) and the initial conditions (31). The solutions
for functions u and p are well-known as being part of the Bateman
equations [2]. For u from the equation u′ = −k1u we have:

u(t) = u0e−k1t (37)

For p from the equation p′ = k1u − k2p = k1u0e−k1t − k2p using Laplace
Transform(see Appendix D) we get:

p(t) =
⎧⎪⎪⎨⎪⎪⎩

k1u0
k2−k1

(e−k1t − e−k2t) + p0e−k2t, k1 ≠ k2
e−k1t(p0 + k1u0t), k1 = k2

(38)
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Figure 15: The function p for k1 = 1.2, k2 = 0.8, p0 = 0.1, u0 = 1.74(the
red one) and k1 = k2 = 1, p0 = 0.1, u0 = 1.74(the blue one)

After we have the exact solution for p from (38) from the equa-
tion x′ = kxp and the Picard-Lindelöf theorem we can conclude that
there is an unique solution for the variable x in the interval [0;+∞).
Then, the Gompertz-Bateman model can be formulated as a differen-
tial equation for the growth function x:

x′ = kxp =
⎧⎪⎪⎨⎪⎪⎩

kx[( k1
(k2−k1)

)u0(e−k1t − e−k2t) + p0e−k2t], k1 ≠ k2
kxe−k1t(p0 + k1u0t), k1 = k2

(39)

Expression (39) induces the following growth rate per capita (also
known as Gompertz “mortality law”:

x′

x
= kp =

⎧⎪⎪⎨⎪⎪⎩

k[( k1
(k2−k1)

)u0(e−k1t − e−k2t) + p0e−k2t], k1 ≠ k2
ke−k1t(p0 + k1u0t), k1 = k2

(40)

For the exact solution of the equation, we can substitute the solutions
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for u and p and using x′ = kxp we easily obtain the solution for x [10]:

x(t)=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x0e
ke−(k1+k2)t(−ek2tk2u0+e(k1+k2)t(k1−k2)(p0+u0)+ek1t(k2p0+k1(−p0+u0))

k2(k1−k2) , k1≠k2,

x0e
k(p0+u0−e−k1t(p0+u0+k1u0t))

k1 , k1=k2.
(41)

We will show the graphic of x for different initial conditions for x0,
x0 = 0.1 and x0 = 0.01. For the other parameters and initial conditions
we will use the relation (32) c = k

k2
(u0 + p0) + lnx0:

Figure 16: The solution x for k1 = 1.2, k2 = 0.8, p0 = 0.1, u0 = 1.74, x0 =
0.1(the red one) and for k1 = 1.2, k2 = 0.8, p0 = 0.1, u0 = 1.74 and
x0 = 0.01(the blue one)
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Figure 17: The solution x for k1 = k2 = 0.8, p0 = 0.1, u0 = 1.74, x0 =
0.1(the red one) and for k1 = k2 = 0.8, p0 = 0.1, u0 = 3.58 and x0 =
0.01(the blue one)

Solution to the Reversible Reaction. In addition to the non-
reversible reaction considered in [10], we discuss next the reversible
reaction. For the reversible reaction, we have the same solution for p.
We use the equation for x x′ = kxp − lx2p to find the exact solution.

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

k

1+e
−k(p0+u0)

k2 +

k(e−k1tu0+ e
−k2t(−k2p0+k1(p0+u0))

k2
)

k1−k2 (
k
x0
−l)

, k1 ≠ k2,

e
k(u0+p0)

k1 kx0

e
k(u0+p0)

k1 lx0+(k−lx0)e
e−k1tk(p0+u0+k1tu0)

k1

, k1 = k2.
(42)

We found the appropriate values for the initial conditions.
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Figure 18: The solution x for k1 = 1.2, k2 = 0.8, p0 = 0.1, u0 = 1.51, x0 =
0.1(the red one) and for k1 = 1.2, p0 = 0.1, u0 = 3.43 and x0 = 0.01(the
blue one)

The Figure 19 shows the solution when k1 = k2.

Figure 19: The solution x for k1 = k2 = 0.8, p0 = 0.1, u0 = 1.51, x0 =
0.1(the red one) and for k1 = k2 = 0.8, p0 = 0.1, u0 = 3.43 and x0 =
0.01(the blue one)
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Generalized Gompertz-Bateman model of order n. With
the initiation of the Gompertz-Bateman model of order 1 we separate
the reactions for the declining species(resources) from the growing
species X. Using this idea, we can substitute the catalyst in the re-
action with by the n-th consecutive species in the Bateman chain(22)
obtaining:

U1
k1Ð→ P1

k2Ð→P2
k3Ð→ . . . knÐ→Pn . . .

kn+1Ð→Q
Pn +X

kÐ→ 2X + Pn
(43)

The second reaction from (43) can be looked as an operator reaction
transforming an input species Pn into an output species X. In terms of
dynamical reaction equations the “Gompertzian” differential operator

x′ = kxp

acts on a given input function p, producing an output function x. To
have an appropriate solution x, we should investigate the properties
of the function p such as continuity, boundlessness, sigmoidality, etc..

4 Some other applications of reaction net-
works:

4.1 Oscillating Chemical Reactions

The Law of Mass Action led to the believe that reactions approach
equilibrium steadily. Indeed, most reactions proceed smoothly, at
varying rates, to a final state of equilibrium. Some, however, do not.
They oscillate in time: reactant, product, or intermediate species’
concentrations fluctuate wildly, often leading to easily observable os-
cillations in time of these concentrations. The Lotka-Volterra model
is the simplest mathematical model which exhibits such oscillations.
Since natural biological systems have memory properties, fractional
differential equations provide an excellent instrument in this respect
in comparison to the classical integer-order counterparts [3]. For ex-
ample, for the Lotka-Volterra model, it is revealed that the so-called
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memory concept of the fractional derivative damps out oscillations
in the population numbers so that the system as a whole settles on
an equilibrium quicker than it would with integer time derivatives.
We will focus our attention on other two oscillation reactions - the
brusselator and the oregonator which also could be represented with
fractional derivatives models.

Brusselator. The Brusselator model is a famous model of chemical
reactions with oscillations. In the middle of the last century, Belousov
and Zhabotinsky discovered chemical systems exhibiting oscillations.
While for most chemical reactions a state of homogeneity and equilib-
rium is quickly reached, this reaction is a remarkable chemical reaction
that maintains a prolonged state of non-equilibrium leading to macro-
scopic temporal oscillations and spatial pattern formation that is very
life-like. After the discovery of oscillating chemical reactions, in 1968
Prigogine proposed a virtual oscillating chemical reaction system -
the Brusselator model. This dynamical system holds a pivotal role
in the study of chemical kinetics, or biochemical reactions, and bio-
logical systems. The dynamical Brusselator reaction-diffusion system
involves a controlled concentration of paired variables intermediates
with reactants and product chemicals with nonlinear oscillations. It
is characterized by the reactions:

A
k1Ð→X

2X + Y k2Ð→3X
B +X k3Ð→Y +D

X
k4Ð→E,

(44)

where A and B are reactants, D and E are products. It consists of
four reactions(44), where the second one is autocatalytic, which we
studied as a private case in Generalized Verhulst Differential Model in
(19). Indeed, it is the autocatalytic reaction that causes the chemical
oscillations in the Brusselator model. It also arises in the formation
of ozone by atomic oxygen via a triple collision, in enzymatic reac-
tions, and in plasma and laser physics in multiple couplings between
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modes. If we note the concentration of reactants A, B, D, E, X, Y as
a, b, d, e, u, v, we can look at every reaction as a step of the brussela-
tor reaction network and write the following differential equations for
every step [8] :

Step Reaction Differential Equations
1 A

k1Ð→X u′ ∶= k1a, a′ =∶ −k1u
2 2X + Y k2Ð→3X u′ ∶= k2u2v, v′ ∶= −k2u2v
3 B +X k3Ð→Y +D v′ ∶= k3ub, d′ ∶= k3ub, b′ ∶= −k3bu, u′ = −k3b
4 X

k4Ð→E e′ ∶= k4u,u′ ∶= −k4u

Table 1: The steps of the Brusselator reaction network with the equa-
tions implied by them

After summarising the single steps from Table 1 , the total dy-
namics of the Brusselator reaction can be described by a system of
two ODEвЂ™s. In dimensionless form, they are:

⎧⎪⎪⎨⎪⎪⎩

u′ = k1a + k2u2v − k3bu − k4u
v′ = k3bu − k2u2v

The rate constants k1 and k2 are superfluous since the rate of reactions
for which they are rate constants can be varied by changing the param-
eters B and A. Similarly, the rate constant k3 of the autocatalytic step
can be made unity by scaling time. Following Tyson [16], the constant
k4 is given the value unity. The model could be generalized by using
fractional derivatives equations and assuming that the concentrations
A and B are held constant during the chemical reaction:

∂αu
∂tα = a + u2v − (b + 1)u

∂βv
∂tβ

= bu − u2v (45)

If we assume that A and B are constant, we can use the idea from 17
and then the reactions will look like:
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A
k1Ð→X +A

2X + Y k2Ð→3X
B +X k3Ð→Y +D +B

X
k4Ð→E

(46)

Oregonator. Another theoretical model of the chemical dynamics
of the oscillatory Belousov-Zhabotinsky reaction, proposed later, is
the Oregonator. The Oregonator dynamics is an activator/inhibitor
system containing both an autocatalytic step and a delayed negative
feedback loop. It is a reduced model of Belousov-Zhabotinsky reaction,
containing five reactions:

A + Y k1Ð→X + P
X + Y k2Ð→2P

A +X k3Ð→2X + 2Z

X +X k4Ð→A + P
B +Z k5Ð→1

2fY,

(47)

where A and B are reactants; X, Y and Z are intermediate species and
P is a product, f is an adjustable stoichiometric factor. If we note the
concentration of reactants A, B, D, E, X, Y as a, b, d, e, u, v, we can
look at the steps of the reaction network again:

Step Reaction Differential Equations
1 A + Y k1Ð→X + P u ∶= k1av, p′ ∶= k1av, a′ ∶= −k1av, v′ ∶= −k1av
2 X + Y k2Ð→2P p′ ∶= k2uv, u′ ∶= −k2uv, v′ ∶= −k2uv
3 A +X k3Ð→2X + 2Z u′ ∶= k3ua,w′ ∶= k3ua, a′ ∶= −k3ua
4 X +X k4Ð→A + P a′ ∶= k4x2, p′ ∶= k4x2, u′ ∶== −k4x2,
5 B +Z k5Ð→1

2fY v′ ∶= k5bw, b′ ∶= −k5bw,w′ ∶= −k5bw

Table 2: The steps of the Oregonator reaction network with the equa-
tions implied by them
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For modeling the Oregonator Mass-Action dynamics, we can use
again fractional-derivatives equations:

∂αu
∂tα = k1av − k2uv + k3ua − 2k4u2

∂βv
∂tβ

= −k1av − k2uv + 1
2fbw

∂γw
∂tγ = 2k3au − k5bw

(48)

5 Conclusion
Mathematical modeling of chemical reaction networks consists of a
variety of methods for approaching questions about the dynamical be-
havior of chemical reactions arising in real-world applications.[7] In
this paper, we focused our attention on studying the behavior of reac-
tants and products of autocatalytic reactions. The main tool we used
was the Law of Mass Action, see section 2.1. The reaction network
approach clearly explains the close links between the Gompertz model
and the Verhulst logistic model [9]. The new look at the Gompertz-
Bateman model [10] as a model of two interacting species U and X,
where the dynamics of the catalyst species U is separately determined
and independent from that of the growing species X can be further
developed by looking for various possibilities for the dynamics of the
catalyst species. The proposed reaction network realization of the
Gompertz growth model can be interpreted from the perspective of
demographic and socioeconomics sciences. Also, the sigmoidal Ver-
hulst and Gompertzian type functions find numerous applications in
fitting real-life biological, ecological, socioeconomics, etc. experimen-
tal measurement data. The current work proposes some original and
innovative ideas expanding the existing ones and adding a new vision
of some of the concepts. The adding of the reactant as a product
of the reaction in the Verhulst Logistic Differential Model [17] doesn’t
change the known results from [11] but gives a more natural and logical
expression of the idea that the concentration of the catalyst remains
constant through the reaction. This is a new kind of approach which
is not known in the existing studies of the logistic model. The explo-
ration of the reversible reaction of the Verhulst Logistic Differential
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Model with all the possible cases for the rate constants has not been
encountered in any other study and gives finished look for the model.
The Verhulst Differential Model is generalized as a reaction of multi-
ple reactants and products. The Gompertz-Bateman Growth/Decay
model is examined [10] and extended with the reversible reaction and
it is found a relationship between the concentrations of the species and
their initial conditions. 36
Additionally, there are shown some applications of the proposed ideas
in other types of reactions and events.
Some of the presented reaction networks (such as the logistic type ones
and the exponential radioactive decay) induce as solutions growth-
decay functions possessing exact algebraic solutions. Based on such
solutions some authors develop various extensions and modifications
obtaining thus various classes of functions that are suitable for approx-
imating measurement data coming from biological and eco-epidemiolo-
gical processes and phenomena. [12] [13]
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Appendices

A Basic Concepts
Gedankenexperiment - term used by the physicist Albert Einstein
to describe his unique approach of using conceptual rather than actual
experiments in creating the theory of relativity.
Bifurcation - an event which occurs when a small smooth change
made to the parameter values (the bifurcation parameters) of a sys-
tem causes a sudden “qualitative” or topological change in its behavior.

Picard-Lindelöf Theorem Let us consider the initial value prob-
lem

y′(t) = f(t, y(t)), y(t0) = y0
Suppose f is is uniformly Lipschitz continuous in y and continuous in
t, then for some value ε > 0, there exists a unique solution y(t) to the
initial value problem on the interval [t0 − ε, t0 + ε].

B Modelling dynamic processes. The case
study of the invention of the Free-Fall
Law

As a thought experiment ("Gedankenexperiment") let us assume that
the Free-Fall Law is not yet invented (or fully accepted) and we need
to establish (re-invent) the Free-Fall Law equations by means of con-
temporary mathematical modelling tools.

Free-Fall Law:
Free fall is any motion of a body where gravity is the only force
acting upon it. Then the acceleration is always downward and has
the same magnitude for all bodies, commonly denoted g.
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For checking the validity of the Free-Fall Law, we use the exper-
imental data. We measure the time at which the body falls to the
ground at fixed heights. Then, we want to find the curve on which
the points lie, which describes the motion. The ancient Greek philoso-
pher Aristotle (384 - 322 BC) discussed falling objects in what was
perhaps the first book on Mechanics. He assumed that all objects fall
with a constant speed and that heavy objects fall faster than light.
Graphically, Aristotle’s model looks as shown on Figure 27. The Ital-
ian scientist Galileo Galilei (1564 - 1642) subjected the Aristotelian
theories to experimentation and careful observation. He then com-
bined the results of these experiments with mathematical analysis in
an unprecedented way. His famous experiment with dropping little
balls from Leaning Tower of Pisa are a real example for the principle
of mathematical modelling.
First, it is assumed that the bodies fall straight. Using some already
found data, this situation will look like this

2 4 6 8 10
Time

100

200

300

400

500

Freefall Distance

Figure 20: Aristotel’s model of Free-Fall Law

However, when we try to fit the data with the parabola, the result
is almost exact.
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Time Distance
5 122.5
6 176.4
7 240.1
8 313.6
9 396.9
10 490.0

We can see that, in fact, the points lie on a parabola as shown on
Figure 28:

2 4 6 8 10
Time

100

200

300

400

500
Freefall Distance

Figure 21: Free-fall experimental data, visualized by parabola

We have seen an example of mathematical modelling. We use this
principle when exploring chemical reaction networks.

C The Laplace Integral Transform
The Laplace transform of a function f(t), defined for all real numbers
t ≥ 0, is the function F (s), which is a unilateral transform defined by

F (s) = ∫
+ inf

0
f(t)e−stdt
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The Laplace transform is a powerful integral transform used to switch
a function from the time domain to the s-domain. The Laplace trans-
form can be used in some cases to solve linear differential equations
with given initial conditions. Its usefulness is in stepping down from
a more difficult problem to an easier one, for example stepping down
from a derivative dF

dt to a function f(s).

L{dF
dt

} = ∫
+ inf

0

dF

dt
e−stdt

Integrating by parts, we have:

L{dF
dt

}

= F (t)e−st
RRRRRRRRRRR

+ inf

0

− ∫
+ inf

0
F (t)d(e−st)

= −F (t = 0) + s∫
+ inf

0
F (t)(e−st)dt

= −F (t = 0) + sf(s)

D Application in Calculating p(t)
We substitute u(t) with the solution from u(t) = u0e−k1t and apply
Laplace transform L of both sides:

dp(t)
dt

= k1u0e−k1t − k2p(t)

L{dp(t)
dt

} = L{k1u0e−k1t − k2p(t)}

sq(s) − p(t) = k1u0
1

s + k1
− k2q(s)
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We assume that p(t = 0) = p0

(s + k2)q(s) =
k1u0
s + k1

+ p0

q(s) = k1u0
1

(s + k2)(s + k1)
+ p0
s + k2

1

(s + k2)(s + k1)
= 1

k2 − k1
1

s + k1
− 1

k2 − k1
1

s + k2

Ô⇒ q(s) = k1u0
k2 − k1

( 1

s + k1
− 1

s + k2
) + p0

s + k2
We apply Inverse Laplace transform:

p(t) = k1u0
k2 − k1

(e−k1t − e−k2t) + p0e−k2t

The calculation could be made easy using CAS Mathematica:

Figure 22: Laplace transform for finding the solution for p
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