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Abstract

This work brings together two recently discussed topics:
mathematical modeling of a bioreactor and working with deriva-
tives of non-integer order. Generally, it turns out that it is
reasonable to replace the integer order derivatives in some of
the already well known mathematical models describing bio-
processes with fractional order ones. However, the specific
structure of such type of derivatives makes the study of the
properties of the models a real challenge. This work contains
primary results for modeling of a bioreactor with appropri-
ately selected numerical approximations. Different scenarios
are taken into consideration: starting from the simplest one
– without mortality and then complicating by adding nonzero
mortality term. In the classical case the solution of the system
of differential equations describing the process has a specific
behaviour in terms of monotonicity. Therefore, the focus of
the further examinations is to find out whether it is possible
to generalize the model into a fractional order one such that
the key properties considering monotonicity still hold. The
results show that the latter requires certain dependencies be-
tween the orders of the derivatives in the mathematical model.
The hypothesis is based on two types of experiments which
are described in detail. Lotka-Volterra and Monod specific
growth rate are used in the mathematical model. The pa-
per contains figures which illustrate the results from different
numerical computations performed via Wolfram Mathematica
software.

Keywords: Bioprocess; Bioreactor; specific growth; Explicit Euler method;
Diffusion; Fractional order derivative; Rieman-Liouville fractional or-
der derivative; Caputo fractional order derivative; Adams-Bashforth-
Moulton method; Mortality rate; Lotka-Volterra model; Monod model
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1 Introduction

Fractional calculus is that part of calculus where fractional order
integral and differential operators and their properties and applica-
tions are studied. It is still considered to be new and innovative topic
despite some significant mathematicians such as Riemann, Liouville
and Caputo had been researching it. Fractional calculus increases
interest with its applications in physics, engineering and biological
processes [Diethelm, 2016]. The motivation for many classical math-
ematical models being modified into fractional order derivative ones
is the opportunity for obtaining better, in terms of quantity, results
– closer to the provided experimental ones [Toledo-Hernandez, Rico-
Ramirez, Iglesias-Silva, and M.Diwekar, 2014] and many recently con-
ducted numerical experiments confirm it [Diethelm, 2016, Bazhlekov
and Bazhlekova, a]. An important property of the fractional order
derivative models, unlike the classical ones, is the memory effect [Di-
ethelm, 2016]. It is caused by the non-local structure of the fractional
order derivatives and is essential for the modeling of biological pro-
cesses.
On the other hand, still little is known about the quality properties
of the fractional order derivative models. In contrast to the classi-
cal models where the analytical examination of properties such as, for
example, monotonicity, is well adopted through the years and is nowa-
days no difficulty to work with, the analytical approach of fractional
order derivative models turns out to be a great challenge. The infor-
mation about the properties of a mathematical model is important for
deciding whether the model is suitable for describing of a given model.

The focus of this thesis is the usage of fractional order derivatives
in the mathematical modeling of bioprocesses. Certain models are
examined and the numerical results are presented. Some basic theo-
retical facts about fractional order derivatives are exposed in section
2. There are given the Riemann-Liouville and the Caputo definitions
for fractional order derivative, also some important properties, simi-
larities and differences between of them. The next section 3 consists of
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the description of the mathematical model (and its main components)
which will be the subject of the following numerical investigations.
The general form of the model is given. First, the classical model and
some of its alternatives (different specific growth rate) are considered
in section 4. Important analytical properties are obtained in the case of
Lotka-Volterra model. Those properties are supported by the numer-
ical results for Lotka-Volterra, Monod, Haldane, Andrews and Webb
specific growth rate. For that purpose explicit Euler method is used.
Section 5 focuses on the modeling of a simplified version of the ad-
sorption process in two-phase fluid system by adding a diffusion term
to one of the equations constituting the classical model. The obtained
results for different values of the diffusion constant are attached in this
section. The generalization of the classical model into fractional order
derivative one is given in section 6. Dependencies between the orders
of the derivatives in the model for which the monotonicity remains the
same as for the classical model are detected via appropriately selected
numerical procedure. Similar research about the qualitative behaviour
of the solution is performed for the fractional order derivative model
when a mortality rate is included in section 7. Section 8 summarizes
the main results and discusses possibilities for future investigations.

2 Fractional order derivatives. Definitions

and properties

By the term “fractional order derivative” or just “fractional deriva-
tive” is meant, as it is clear from the name, derivative of non-integer
order. Many definitions for a fractional derivative exist nowadays
[Samko, Kilbas, and Marichev, 1993, Kilbas, Srivastava, and Trujillo,
2006]. Two of the most popular ones – the Riemann-Liouville and the
Caputo definition [Gorenflo and Mainardi, 1997] are considered here.

According to the Riemann-Liuoville approach to the fractional cal-
culus, it is natural to define a fractional integral of order α > 0 of
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function f(t) as a generalization of the Cauchy’s formula:

Jnf(t) :=
1

(n− 1)!

∫ t

0

(t− τ)n−1f(τ)dτ, t > 0 (1)

where n is a positive integer.
For the transition from integer values of the index to fractional ones in
a natural way, the Gamma function is needed. Actually, considering
that (n − 1)! = Γ(n), one can simply define integral of order α > 0
with the following equality:

Jαf(t) :=
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ, t > 0 (2)

with J0 := I where I is the identity operator.
Here are some easily obtained properties:
1. The semi-group property:

JαJβ = Jα+β (3)

2. Commutativity (follows from 1.):

JαJβ = JβJα (4)

3. Effect on power functions:

Jαtγ =
Γ(γ + 1)

Γ(γ + 1 + α)
tα+γ, α > 0, γ > −1, t > 0. (5)

2.1 Riemann-Liouville definition

From here on Dn denotes the nth derivative operator where n is a
positive integer. The following holds:

DnJn = I, (6)

JnDn 6= I (7)

6



and furthermore (from (1))

JnDnf(t) = f(t)−
n−1∑
k=0

f (k)(0+)
tk

k!
. (8)

It is natural from the definition of Dα for α ∈ R+ to be required that

DαJα = I (9)

which leads to the following definition:
Definition 1: (Riemann-Liouville derivative of order α > 0)

Dαf(t) :=

{
dm

dtm
[ 1
Γ(m−α)

∫ t
0

f(τ)
(t−τ)α+1−mdτ ], m− 1 < α < m

dm

dtm
f(t), α = m

(10)

or briefly,
Dαf(t) := DmJm−αf(t), (11)

where m is such a positive integer for which:

m− 1 < α ≤ m,

i.e. m = dαe. For completeness is defined D0 = J0 = I.
The following equality holds (similar to the integer option (6)):

DαJα = I,∀α > 0. (12)

Indeed,

DαJα = DmJm−αJα = DmJm−α+α = DmJm = I,

where (11), the semi-group property (3) and a common property of
the integer order derivatives (6) are sequentially applied in order to
get the latter.
It is essential to be mentioned that, unlike the integer order case, if
α /∈ N, Dα1 6= 0 (and hence Dαconst 6= 0):

Dα1=DmJm−α1=Dm(
1

Γ(m−α)

∫ t

0

(t−τ)m−α−1tτ)=
1

Γ(m−α)
Dm t

m−α

m−α

=
1

Γ(m− α)

t−α(m− α)(m− α− 1)...(1− α)

m− α
=

t−α

Γ(1− α)
.
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The last equality in the sequence follows from the recurrent depen-
dence

Γ(z) =
Γ(n+ z + 1)

z(z + 1)...(z + n)
, z + n > 0, n ∈ N (13)

after replacing z = 1− α and n = m− 1.
Note: The poles of Gamma function are 0,-1,-2,..., and hence t−α

Γ(1−α)
6=

0,∀α /∈ N.

2.2 Caputo definition

Definition 2: (Caputo derivative of order α > 0)

Dα
∗ f(t) :=

{
1

Γ(m−α)

∫ t
0

f (m)(τ)
(t−τ)α+1−mdτ, m− 1 < α < m

dm

dtm
f(t), α = m

(14)

or briefly,
Dα
∗ f(t) := Jm−αDmf(t), (15)

where again m = dαe. The first main difference between the Caputo
fractional derivative and the Riemann-Liouville one is the fact that
the Caputo definition for fractional order derivative requires absolute
integrability of the derivative of order m.
It is easy to obtain

Dαf(t) := DmJm−αf(t) 6= Jm−αDmf(t) =: Dα
∗ f(t), (16)

based on the fact that

Dαf(t) = Dα
∗ f(t) +

m−1∑
k=0

tk−α

Γ(k − α + 1)
f (k)(0+). (17)

A property similar to (8) (the integral of derivative property) can be
obtained in the sense of the Caputo definition:

JαDα
∗ f(t) = JαJm−αDmf(t) = Jα+m−αDmf(t)

= JmDmf(t) = f(t)−
m−1∑
k=0

f (k)(0+)
tk

k!
.
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Note: One can prove the latter property when using consistently the
semi-group property (3) and property (8).
The integral of derivative property leads to the fact that solving Ca-
puto fractional order derivative equations requires initial data for the
unknown function and its integer-order derivatives. This makes the
Caputo derivative more suitable for applications unlike the Riemann-
Liouville derivative where the integral of derivative expression contains
integro-differential operators of the unknown function at t = 0. Be-
cause of that only Caputo fractional order derivatives in the interval
(0, 1) are used here. In this case, m = 1 and integral of Caputo deriva-
tive equals f(t) − f(0). This means that only the initial value f(0)
of the unknown function f(t) will be necessary for solving the corre-
sponding mathematical model.
Another signifficant property of the Caputo derivative which distin-
guishes it from the Riemann-Liouville derivative is:

Dα
∗ const ≡ 0. (18)

The latter follows immediately from the definition of the Caputo frac-
tional derivative (15) as it is firstly applied integer order derivative of
constant which is identical with 0.

3 Mathematical model

The focus here is the modeling of a bioreactor [Diethelm, 2016,
Bazhlekov and Bazhlekova, a, Alt and Markov, 2012]. Bioreactors are
used for the production of bio-fuel (e.g. biodiesel and bioethanol),
biological surfactants, etc. Generally, the bioreactor is a container
full of some material – the so called substrate (usually some sugar
such as fructose or glucose), biomass (bacteria), and also some other
components which will be considered insignificant for the process and
hence are not taken into account in the mathematical model. As a
result of the bioprocess a bioproduct is produced. The general form
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of the problem is represented by the following system:
Dβ
∗ b(t) = µ(s(t))b(t)−mb(t), 0 < t ≤ T

Dσ
∗ s(t) = −kµ(s(t))b(t), 0 < t ≤ T

Dε
∗e(t) = pµ(s(t))b(t), 0 < t ≤ T

b(0) = b0, s(0) = s0, e(0) = 0, 1 ≥ β > 0, 1 ≥ σ > 0, 1 ≥ ε > 0

(19)
b(t) – biomass
s(t) – substrate
e(t) – ethanol
µ(s(t)) – specific growth rate
m – mortality coefficient
k, p – other parameters.
Note: The function µ(s) ≥ 0 is defined for s ≥ 0 and may take vari-
ous forms [Alt and Markov, 2012]. However, the main results in this
work are obtained with Lotka-Volterra and Monod specific growth rate.
A significant fact that should be mentioned is that the first two equa-
tions of (19) are independent from the third one. Hence, the general
approach to the problem is to split into two sub-problems: first to
solve the system of the first two equations (with the corresponding
initial conditions). After that to solve the third equation with substi-
tuting the resulting solution (b(t), s(t)).
In the literature there exist different possibilities for the specific growth
rate. The main focus here is the monotonicity of the solution of sys-
tem (19). In the classical case (β = σ = ε = 1) when mortality is not
considered (m = 0), the analytical results (section 4, subsection 4.1)
show monotonic behaviour of the model which is logical a biological
point of view. The challenge is to observe whether these properties
hold in the case when at least one of the values of the derivative orders
in the model (19) is in the interval (0, 1). In the classical case with
mortality when β = σ = 1 some analytical results for the solution
of (19) are obtained in section 7. Again the goal is to find out for
which values of β and σ in the interval (0, 1) those properties remain
valid. Unfortunately, no matter what the value of m is, retrieving in-
formation about the properties of the analytical solution of (19) in the
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fractional order derivative case seems unbearable for now. Therefore
the further investigations require numerical approach. The primary
results of this work show that there are indeed certain dependencies
between the values of β, σ and ε in the interval (0, 1) for which the
monotonicity properties of the classical model still hold. It is encour-
aging that similar results are independently obtained in other works
[Bazhlekov and Bazhlekova, a].

4 Classical model without mortality

β = σ = ε = 1 and m = 0 is considered. Results for different specific
growth rate parameters of the model are presented.

4.1 Lotka-Volterra model. Analytical properties

Important analytical results for the exact solution of (20) in the
classical case without mortality (i.e. when β = σ = ε = 1 and m = 0)
are the topic of this subsection [Diethelm, 2016]. For that purpose
Lotka-Volterra specific growth rate is used. Lotka-Volterra specific
growth rate is a linear function µ(s) := cs where c is a positive con-
stant. When the respective substitution of µ(s) in (19) is done, the
following mathematical model of a bioreactor is obtained:

Dβ
∗ b(t) = cs(t)b(t)−mb(t)

Dσ
∗ s(t) = −kcs(t)b(t)

Dε
∗e(t) = pcs(t)b(t)

b(0) = b0, s(0) = s0, e(0) = e0.

(20)

Proposition 1. In the case when β = σ = ε = 1 and m = 0 there
exists T ′ > 0 for which the system (20) has a unique solution in the
interval (0, T ′].
Furthermore, one can assume that considering the positivity of the
initial values b0 and s0 then from continuity follows that there is a
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neighbourhood of 0 where s(t) and b(t) take positive values. The pos-
itivity of the solution of the problem is extremely important from a
biological point of view considering the processes that are being mod-
eled. Negative values for whichever one of the three unknown functions
makes no sense and leads to the conclusion that the chosen model is
inappropriate. To define the neighbourhood of 0, or briefly the in-
terval (0, T ] where b(t) and s(t) take positive values, T is chosen as
follows: T := min{T ′, B′, S ′} where B′ := sup{t ∈ (0, T ) : b(τ) >
0,∀τ ∈ (0, t)} and S ′ := sup{t ∈ (0, T ) : s(τ) > 0,∀τ ∈ (0, t)}. Then
the following statement holds:
Proposition 2: In the case when β = σ = ε = 1 and m = 0 there
exists T > 0 such that the system (20) has a unique solution in the
interval (0, T ], and b(t) > 0, s(t) > 0, e(t) > 0,∀t ∈ (0, T ).
Proof: The positivity of b(t) and s(t) follows from the definition of
T , while the positivity of e(t) follows from the third equation of the
system, namely: considering that b(t) > 0, s(t) > 0, ∀t ∈ (0, T ) and

also the fact that p is a positive constant, then de(t)
dt

> 0,∀t ∈ (0, T )
which basically means that e(t) is increasing on the interval (0, T ) and
hence e(t) > e(0) = 0,∀t ∈ (0, T ). �
Finally, based on these two propositions, the following theorem is for-
mulated:
Theorem 1: Under the conditions of Proposition 1 and Proposi-
tion 2 the following hold on the interval (0, T ):
(a) s is strictly decreasing,
(b) b and e are strictly increasing.
Proof: As already proven in Proposition 2 b(t) > 0, s(t) > 0,∀t ∈
(0, T ). Then from the positivity of the parameters k and p the follow-
ing holds: s′(t) < 0, b′(t) > 0, e′(t) > 0,∀t ∈ (0, T ) which is basically
equivalent to (a) and (b). �
The numerical experiments confirm that those analytical results hold
not only for Lotka-Volterra model but for every other function µ(s)
defining specific growth rate (figures 2, 3 and 4).
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4.2 Monod model

One of the most common functions for modeling microbial growth
is Monod function. It is defined as follows:

µM(s) := µ∗
s

K + s
, (21)

where µ∗ and K are positive constants. In the classical case (β = σ =
ε = 1) the problem (19) yields the following form (Monod model):

db(t)
dt

= µ∗ s(t)
K+s(t)

b(t), 0 < t ≤ T
ds(t)
dt

= −kµ∗ s(t)
K+s(t)

b(t), 0 < t ≤ T
de(t)
dt

= pµ∗ s(t)
K+s(t)

b(t), 0 < t ≤ T

b(0) = b0, s(0) = s0, e(0) = e0.

(22)

Two sets of parameters of the model (22) are used for the numerical
simulations:

µ∗ = 0.09[h−1], K = 68[ppm], k = 5, p = 10,

b0 = 100[ppm], s0 = 200[ppm], e0 = 0[ppm]
(23)

and
µ∗ = 0.6[h−1], K = 0.81[g/L], k = 4.5, p = 3.4,

b0 = 0.1[g/L], s0 = 5[g/L], e0 = 0[g/L].
(24)

Note: These parameters are experimentally established [Bandyopad-
hyay, Chowdhury, Bhattacharjee, and Pan, 2013], [Das, Calay, and
Chowdhury, 2020] and the numerical results are attached respectively
to [Bazhlekov and Bazhlekova, b] and [Bazhlekov and Bazhlekova, a].
It should be mentioned that the measuring units for the concentration
are different in both sets. The unit used in (23) is particle per million
[ppm] and the unit used in (24) is gram per liter [g/L]. The connec-
tion between both units is: 1g/L = 1000ppm. In order to facilitate the
comparison of the results obtained here with those in the correspond-
ing publications, the measuring units in (23) and (24) are kept in their
original form.
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For achieving comparability between the numerical results the experi-
ments in this sections are performed with parameters (23) for Monod
model and

c=10−3, k=5, p=10, b0 =100[ppm], s0 =200[ppm], e0 =0[ppm] (25)

for Lotka-Volterra model. Figure 1 shows the similarity between the
solutions of both models and an appropriate choice of parameters (25).
The numerical results in this section are obtained by using explicit
Euler method.

(a) (b)

(c)

Figure 1: Graphs for the approximate solution B – (a), S – (b) and
E – (c). Explicit Euler method at time step τ = 0.05 is used for
Lotka-Volterra and Monod model.
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4.3 Alternatives of the specific growth rate

Some other popular functions describing microbial growth are [Alt
and Markov, 2012]:
Webb:

µW (s) := µ∗
s(1 + γ s

Ki
)

K + s+ s2

Ki

, (26)

Haldane:
µH(s) := µ∗

s

(K + s)(1 + s
Ki

)
, (27)

Andrews:
µA(s) := µ∗

s

K + s+ s2

Ki

. (28)

The corresponding mathematical models are not considered in detail,
because at a proper choice of the parameters Ki and γ:

Ki = 680[ppm], γ = 0.65. (29)

the numerical results do not significantly differ from those with Monod
model, supposed the same initial conditions are used. This is illus-
trated in figures 3 and 4, where the numerical solutions of the model
with different specific growth rate functions (26) – (28) are used for
both sets of parameters (23) and (24) respectively. It is seen from the
figures that the difference between the results for the different models
are minor and for parameters (24) they are almost identical (figure 4).

4.4 Explicit Euler numerical method

As already mentioned in section 1, for the numerical solution of (22)
the explicit Euler method is implemented. A comparison between the
explicit and the implicit Euler method shows insignificant difference
between the approximate solutions obtained by using both methods.
Furthermore, considering the nonlinearity of the model, the implicit
Euler method is much slower than the explicit one because at each
iteration over time a nonlinear system of three equations has to be
solved. Therefore, the explicit Euler method is chosen here.
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First, a uniform mesh over the time interval [0, T ] with step τ is de-
fined:

ωτ := {jτ, j = 0, ...,m, m =
T

τ
}. (30)

In the explicit Euler method for (22) the solution at time step j+1 is
given by: 

Bj+1 = Bj + τµ∗
Sj

K+Sj
Bj, j = 0, ...,m− 1

Sj+1 = Sj − τkµ∗ Sj
K+Sj

Bj, j = 0, ...,m− 1

Ej+1 = Ej + τpµ∗
Sj

K+Sj
Bj, j = 0, ...,m− 1

B0 = b0, S0 = s0, E0 = e0,

(31)

where (B, S,E) is the approximate solution of the system (22).The
local approximation error of this method is O(τ). The results for
parameters (23) are given in figures 2a, 2b and 2c.
There exists exact solution of the system of differential equations{

db(t)
dt

= µ∗ s(t)
K+s(t)

b(t)
ds(t)
dt

= −kµ∗ s(t)
K+s(t)

b(t)
(32)

and it is given in [Alt and Markov, 2012] by an implicit function con-
taining parameters which depend on the initial data. Hence using
that result for solving Cauchy problem (22) is practically impossible.
For this reason as a basis of comparison the numerical solution ob-
tained using the built-in method NDSolve of the software Wolfram
Mathematica is used. This solution is accurate enough in order to
be used for determining the error of explicit Euler method (31). As
already mentioned above, the local error of approximation is of or-
der τ – the time step. Applying the explicit Euler method (31) with
τ = 0.1; 0.01; 0.001; 0.0001 and comparing the numerical solution with
the respective one from applying NDSolve confirms that.
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(a) (b)

(c)

Figure 2: Graphs for the approximate solution B – (a), S – (b) and E
– (c). Explicit Euler method at time step τ = 0.1 is used for Monod
model and parameters (23).
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(a) (b)

(c)

Figure 3: Graphs for the approximate solution B – (a), S – (b) and E
– (c). Explicit Euler method at time step τ = 0.1 is used for Monod,
Haldane, Andrews and Webb model and parameters (23).

18



(a) (b)

(c)

Figure 4: Graphs for the approximate solution B – (a), S – (b) and E
– (c). Explicit Euler method at time step τ = 0.1 is used for Monod,
Haldane, Andrews and Webb model and parameters (24).
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5 Model with diffusion

The subject of this section is a space dependent form of the process,
i.e. when it depends not only from time but also from space. Such sit-
uation arises as a result of bioprocess in a two-phase fluid system. The
substrate and the biomass are soluble only in one of the phases where
the process occurs. The bioproduct, on the other hand, is soluble in
both phases and/or is adsorbed at the interface. As a consequence of
this transition there is a decrease of the bioproduct concentration on
the interface which leads to unhomogeneous distribution of the bio-
product [Bazhlekov and Bazhlekova, b]. Here one-dimensional model
is considered, which corresponds to adsorption on a flat interface. As
the substrate (s) and the biomass (b) are homogeneously distributed,
i.e. are space independent, the first two equations from (19) remain
unchanged, while in the third one there is an additional diffusion term
representing the flux due to unhomogeneous distribution of the bio-
product:

db(t)
dt

= µ(s(t))b(t), 0 < t ≤ T
ds(t)
dt

= −kµ(s(t))b(t), 0 < t ≤ T
∂e(t,x)
∂t

= d∂
2e(t,x)
∂x2

+ pµ(s(t))b(t), 0 < t ≤ T, 0 < x < X

(33)

with initial conditions
b(0) = b0

s(0) = s0

e(0, x) = e0, 0 < x < X

(34)

and boundary conditions{
e(t, 0) = e0, 0 < t ≤ T
∂e(t,x)
∂x

(t,X) = 0, 0 < t ≤ T.
(35)

Note: The choice of the first boundary condition is done in order
to simply represent a model of adsorption at the interface where the
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concentration of the bioproduct is kept constant e0. The second bound-
ary condition in this case is selected in order to express zero flux at a
distance X from the interface.
The focus of this section is on the initial-boundary problem (33) – (35)

when µM(s) := µ∗ s(t)
K+s(t)

, i.e. Monod function.
It is well known that the smaller the diffusion coefficient d > 0 is, the
“steeper” the graph of e(t1, x) is for small values of x (i.e. close to
the inter-phase boundary) at any fixed time t1. To illustrate this fact,
several experiments for different values of d are performed. The values
of the parameters of the bioprocess are again (23) and (24). As the
first two equations do not depend on the third one, the approximate
solutions for the substrate (S) and the biomass (B) remain the same
as for the space independent model (figures 3a, 3b, 4a and 4b) and
therefore only graphs of the approximate solution for the bioproduct
(E) is presented.

The following explicit numerical method is implemented for the
numerical solving of the initial-boundary value problem (33) – (35):
A uniform mesh in time and space is defined:
ωh,τ := ωh × ωτ , where
ωh := {ih, i = 0, ..., N, N = X

h
} and

ωτ := {jτ, j = 0, ...,M, M = T
τ
}.

As already mentioned above, the independence of the first two equa-
tions in (33) from the third one provides the opportunity for the fol-
lowing (explicit) two-part numerical method to be implemented:
1. In the first part the system of the first two equations of (33) with
the corresponding initial conditions is solved numerically with the ex-
plicit Euler method (as already described in subsection 4.4
2. The already obtained approximate solution for the biomass B =
{Bj, j = 0, ...,M} and the substrate S = {Sj, j = 0, ...,M} is then
substituted in the third equation in order to find the approximate so-
lution for the bioproduct E = {Ej

i , i = 0, ..., N, j = 0, ...,M}. Thus,
the numerical procedure is as follows:

2.1 Determining the initial time layer according to (34):

E0
i = e0, i = 0, ..., N (36)
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2.2 Determining the j + 1-th time layer for j = 0, ...,M − 1:

Ej+1
0 = e0, (37)

Ej+1
i =

dτ

h2
Ej
i−1 +(1−2

dτ

h2
)Ej

i +
dτ

h2
Ej
i+1 + τpµ(Sj)Bj, i = 1, ..., N −1,

(38)

Ej+1
N = 2

dτ

h2
Ej
N−1 + (1− 2

dτ

h2
)Ej

N + τpµ(Sj)Bj. (39)

Equations (37) and (39) correspond to the boundary conditions (35).
To ensure stability of the numerical method described above, a con-
dition for the positivity of its coefficients must be imposed. The only
coefficient that is not necessarily positive is 1 − 2dτ

h2
(equations (38)

and (39)). Hence, the stability of the numerical method requires the
following relationship between the steps over time and space:

τ <
h2

2d
. (40)

Considering values of d ∈ (0, 1] the condition (40) is satisfied if, for
example, τ = h2

4
. The numerical results from the above described

method applied to (33) – (35) and different values of d are illustrated
by figure 5.

The results presented in both figures 5a and 5b show that there is
a boundary layer around the interface (x = 0), where concentration
of the bioproduct E has significant gradient. Far from the interface
(e.g. x > 5) concentration is practically space independent. It is also
seen that the thickness of the boundary layer depends on the value of
the diffusion coefficient d. Comparisons between concentration profiles
for a given value of d presented in figures 5a and 5b indicate that the
thickness of the boundary layer is almost insensitive on the values of
the parameters of the bioreaction (i.e. (23) and (24)).
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(a) (b)

Figure 5: Graphs for the approximate solution of E for t = 10 and
x ∈ (0, 10]. The explicit method described in this section at time step
τ = 0.1 and h = 0.0025 is used for Monod model and parameters
(23) – (a) and parameters (24) – (b). The diffusion coefficient d takes
different values in the interval (0, 1].

6 Fractional order derivative model

The classical model (with integer order derivatives), presented in
section 4 is extended in the present section to the fractional order
derivative model. In the case of the bioreactor problem, generally
described with (19), this means that the values of the derivative or-
ders β, σ and ε can be in the interval (0, 1]. As already mentioned in
the beginning of this thesis, using time fractional order derivatives is
really beneficial for modelling biological processes. The reason is in
a particular property due to the non-local structure of the fractional
order derivatives. The advantage of this property is its dependence
from previous time interval (as its name suggests) which is essential
for bioprocesses. On the contrary, using classical models provides only
information about the current data which in many occasions can be
misleading in terms of the relevant interpretation of the process. Un-
fortunately, the lack of analytical approach for the fractional analysis
can lead to some significant difficulties for determining important qual-
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itative properties (e.g. monotonicity) of the solution of the fractional
derivative models. For the problem considered in this work, the prop-
erty monotonicity is essential in terms of the accuracy of the model
from a biological point of view: it is logical to expect that the sub-
strate s(t) is a decreasing function which tends to zero (for sufficiently
long time). The biomass b(t) (when no mortality is considered) and
the bioproduct e(t) are increasing in some interval (0, T ). In this sec-
tion the model (19) is considered in the case of absence of mortality
of the biomass (m = 0).

6.1 General form of the fractional order deriva-
tive model. A predictor-corrector numerical
method

Before the numerical results for the concrete problem being ex-
posed, the general form of the implemented for that purpose numer-
ical method is briefly described. The case of fractional order deriva-
tive models requires the numerical solving of integral equations. This
makes a significant difference with the common methods for numer-
ical solving of differential equations. For the purpose of this work a
predictor-corrector scheme of Adams type – The Adams-Bashforth-
Moulton method is used. It can be applied for both linear and non-
linear problems, as well as to be extended for multidimensional equa-
tions [Baleanu, Diethelm, Scalas, and Trujillo, 2012, Diethelm, Ford,
and Freed, 2002]. Consider the general form of the fractional order
n-dimensional derivative problem:{

Dα
∗y(t) = f(y(t)), 0 < t ≤ T, (41)

with initial data
y(0) = y0, (42)

where α = (α1, ..., αn), αi > 0, i = 1, ..., n, y(t) = (y1(t), ..., yn(t)),
f(y) = (f1(y), ..., fn(y)) for some n ∈ N. If αi ∈ (0, 1] the problem
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(41) is equivalent to the following Volterra integral equation:

y(t) = y(0) +
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ,y(τ))dτ. (43)

Note: For obtaining (43) both sides of (41) are integrated. After that
the integral of derivative property given in subsection 2.2 is applied.
For the implementation of the Adams-Bashforth-Moulton predictor-
corrector method the uniform mesh (30) is used. The non-local struc-
ture of the fractional order derivatives (or the fact that in equa-
tion (43) there is integration from 0 to t) requires certain modifi-
cations of the classical Adams-Bashforth-Moulton predictor-corrector
method of order 2 which is used in the classical model case (i.e. when
αi = 1, i = 1, ..., n. There is a brief description of the method (Y
denotes the approximate solution of (41) – (42)):
1. Setting the initial values (42):

Y0 = y0 (44)

2. Calculation of the k + 1-th approximation for k = 0, ...,M − 1
via the following consecutive steps:
2.1 Finding the k + 1-th predictor:

YP
k+1 = Y0 +

1

Γ(α)

k∑
j=0

bj,k+1f(tj,Yj) (45)

2.2 Finding the k + 1-th corrector:

Yk+1 = Y0 +
1

Γα
(
k∑
j=0

aj,k+1f(tj,Yj) + ak+1,k+1f(tk+1,Y
P
k+1)), (46)

where

bj,k+1 :=
τα

α
((k + 1− j)α − (k − j)α), (47)

Ak+1
j :=


kα+1 − (k − α)kα, j = 0

(k − j + 2)α+1 − 2(k − j + 1)α+1 + (k − j)α+1, 1 ≤ j ≤ k

1, j = k + 1

(48)
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and

aj,k+1 :=
τα

α(α + 1)
Aj,k+1. (49)

The method is described in more detail in [Diethelm, Ford, and Freed,
2002]. It can be proven that the order of this method is O(τ p) where
p = min{2, 1 + α}, or in other words, p is the minimum of the order
of the corrector (which is 2) and the order of the predictor, which
is 1 plus the order of the differential operator. As for its stability
properties, they are at least as good as the corresponding properties of
the respective Adams-Bashforth-Moulton predictor-corrector method
of order 2 for the classical case [Diethelm, Ford, and Freed, 2002].

6.2 Monotonicity in the fractional order deriva-
tive case – propositions

After obtaining essential for the qualitative properties of the classical
model results (subsection 4.1), it is logical to ask whether analogous
of them can be obtained in the case when at least one of the values
of β, σ, ε is not an integer, in the interval (0, 1), to be more precise.
It turns out that in this case an analytical approach still does not ex-
ist. Therefore, the focus of the work is with the help of appropriately
selected numerical methods, to find out requirements for the values
of β, σ, ε ∈ (0, 1] which guarantee the satisfaction of the qualitative
properties of the classical model (monotonicity, in particular). A sig-
nificant number of numerical experiments in this direction leads to the
following conclusion:
(a) For σ ≤ β b is increasing and for σ > β b is not increasing for at
least one set of parameters of the model,
(b) For σ ≤ ε e is increasing and for σ > ε e is not increasing for at
least one set of parameters of the model.
The results for Lotka-Volterra and Monod model are presented in the
next subsection.

To confirm the hypothesis about the dependencies between the
values of β, σ and ε required for the maintenance of the monotonicity
properties of the solution (i.e. the results from Theorem 1) two main
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experiments are conducted.
First experiment: The purpose of this experiment is to examine
the behaviour of the solution of the model for different values of β,
σ and ε when two of them are fixed and the third one takes different
values in the interval (0, 1] and see in which cases B and E are mono-
tonic. Here is how the experiment is set:
The system (19) with m = 0 is numerically solved with Adams-
Bashforth-Moulton method. β, σ and ε are taken as parameters in
the implementation of the method. Therefore these values are set
manually for each calculation. The graphs of the solution B, S and
E, respectively, are united for the different values of the non-fixed pa-
rameter (figures 6, 7, 8).
Second experiment: Unlikely the First experiment this one does
not show the graphs of the approximate solution of the system (19)
although it is been solved. The purpose of this experiment is to deter-
mine whether B and E are monotonic for a certain β, σ, ε and interval
of time T. Here it is easier to investigate the behaviour of the solution
for many different values of the parameters providing information only
for its monotonicity – again unlikely the First experiment. Depend-
ing on which one will be investigated – B or E – there are two types
of numerical calculations that can be made in this experiment:
(a) For given (σ, β) to determine if B is increasing for the specified
interval of time,
(b) For given (σ, ε) to determine if E is increasing for the specified
interval of time.
Both methods work on the same principle: for initialized (σ, β) (for
(a)) and (σ, ε) (for (b), β = 1 is fixed), first,
- The first two equations from (19) with m = 0 and the corresponding
initial values are solved with the Adams-Bashforth-Moulton method -
method (a)
- The whole system (19) with m = 0 is solved with the Adams-
Bashforth-Moulton method – method (b).
Then a counter is initialized at 0. For j = 0, ...,M − 1 if
- Bj+1 > Bj – method (a)
- Ej+1 > Ej – method (b),
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the counter increases with 1. This means that when the check is done
for each j = 0, ...,M − 1 the solution (B or E) is monotonic in the
interval T only if the counter equals M . The result from both (a) and
(b) is boolean: if the counter equals M at the end of the check, then
the program returns 1, otherwise it returns 0. Graphically, this result
is represented by a point in a coordinate system
- (σ, β) for (a) (figure 9a),
- (σ, ε) for (b) (figure 9b)
by multiplying the corresponding coordinates with the result from the
experiment, i.e. 0 or 1. Thus, the point with these coordinates ((σ, β)
or (σ, ε)) appears on the graph only if the solution (B or E) is mono-
tonic in the interval (0, T ).
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6.3 Numerical results for Lotka-Volterra and Monod
model

Numerical results from First experiment and Second experi-
ment, described in the previous subsection, for Lotka-Volterra and
Monod model are presented here.

(a) (b)

(c)

Figure 6: Graphs for the approximate solution B – (a), S – (b) and E
– (c). Adams-Bashforth-Moulton method at time step τ = 0.1 is used
for Lotka-Volterra model and parameters (25). σ = 0.75, ε = 0.75 and
β takes different values in the interval (0, 1].
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(a) (b)

(c)

Figure 7: Graphs for the approximate solution B – (a), S – (b) and
E – (c). Adams-Bashforth-Moulton method at time step τ = 0.1 is
used for Monod model and parameters (23). σ = 0.75, ε = 0.75 and
β takes different values in the interval (0, 1].

Figures 6 and 7 represent the numerical results from the First
experiment for Lotka-Volterra and Monod model, respectively. Here
the values of σ and ε are fixed at 0.75 and β takes different values in the
interval (0, 1] starting from 0.2 with step 0.2. It is seen on the figures
that the graphs of S (figures 6b for Lotka-Volterra model and 7b for
Monod model) and E (figures 6c for Lotka-Volterra model and 7c for
Monod model) remain almost unchanged for the different values of β.
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Figures 6a (Lotka-Volterra model) and 7a (Monod model) show that
changing β has a significant impact on B. It is clear from the graphs
that for lower values of β the values of B at each moment of time are
also lower. On figure 7a it is seen that for β = 0.2 and β = 0.4 B
starts decreasing at a certain moment which confirms the hypothesis
that for σ > β B is not increasing for at least one set of parameters of
the model. However, in some specific cases reaching non-monotonicity
might take longer time. This happens when the values of σ and β
are close to each other but still σ > β. This is more noticeable for
Lotka-Volterra model (figure 6a).

(a) Lotka-Volterra model (b) Monod model

Figure 8: Graphs for the approximate solution E for Lotka-Volterra
model with parameters (25) – (a) and Monod model with parameters
(23) – (b). Adams-Bashforth-Moulton method at time step τ = 0.1 is
used. σ = 0.75, β = 0.75 and ε takes different values in the interval
(0, 1].

The graphs on figure 8 represent the results from the First ex-
periment for Lotka-Volterra (figure 8a) and Monod (figure 8b) model.
Here the values of σ and β are fixed at 0.75 and the value of ε takes
different values in the interval (0, 1] starting from 0.2 with step 0.2.
Due to the independence of the first two equations on the third one
the value of ε does not affect the solution for B and S. Therefore only
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graphs of E are presented.
Note: In this case the choice of the values of β and σ satisfies the
hypothesis for monotonicity of B.
The behaviour of E depending on the different values of ε is similar to
the behaviour of B depending on the different values of β described
above: for lower values of ε the values of E at each moment of time
are also lower. For the Monod model it is seen on the figure 8b that
for ε = 0.2 and ε = 0.4 E starts decreasing at a certain moment which
confirms the hypothesis that for σ > ε E is not increasing for at least
one set of parameters of the model. The fake monotonicity appears
again for values of σ and ε close to each other but still satisfying σ > ε
which is more noticeable for Lotka-Volterra model (figure 8a).

(a) (b)

Figure 9: Numerical results from the Second experiment represent-
ing the points with coordinates (σ, β) for which B is monotonic – (a)
and points with coordinates (σ, ε) for which E is monotonic – (b).
Monod model with parameters (23) is used.

Figure 9 represents the results form the Second experiment for
the Monod model and parameters (23).
Figure 9a is a result from the Second experiment, method (a) and
shows the points with coordinates (σ, β) for which B is monotonic. For
the numerical calculations σ and β take values in a uniform mesh with
step 0.2 on the unit square. It is seen that those coordinates satisfy
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σ ≤ β which supports the hypothesis that B is monotonic for σ ≤ β
and is not monotonic for σ > β and at least one set of parameters of
the model.
Figure 9b is a result from the Second experiment, method (b) and
shows the points with coordinates (σ, ε) for which E is monotonic. For
the numerical calculations σ and ε take values in a uniform mesh with
step 0.2 on the unit square. It is seen that those coordinates satisfy
σ ≤ ε which supports the hypothesis that E is monotonic for σ ≤ ε
and is not monotonic for σ > ε and at least one set of parameters of
the model.
Note 1: Method (b) requires solving the whole system (19). There-
fore for its implementation a value for β is needed. For obtaining the
results shown on figure 9b β = 1. The choice for the value of β is done
according to the hypothesis that for σ ≤ β B is monotonic.
Note 2: For most of the points (σ, β) (or (σ, ε)) the experiment was
performed with T = 15. However, in order to avoid fake monotonicity
in the cases when σ > β (or σ > ε) and their values are close to each
other, e.g. (σ, β) = (0.4, 0.2) (or (σ, ε) = (0.4, 0.2)) the experiment
was performed for a longer period of time.
Note 3: The Second experiment, methods (a) and (b), was per-
formed also for Lotka-Volterra model with parameters (25). The cor-
responding figures are similar to those for the Monod model (figures
9a) and 9b and are not presented here.

7 Model with included mortality of the

biomass

In the previous section 6 the model (19) is studied at the absence
of mortality (m = 0). Here these investigations are extended, as a
term representing mortality of the biomass is added in the model, see
the last term in the first equation of (19). The addition of mortality
of the biomass implies changes in the behaviour of the solution of the
system (7) (more precisely the behaviour of B) in comparison to the
case without mortality.
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7.1 Properties of the classical model

First, the properties of the classical model (β = σ = ε = 1) will be
investigated.
The following system is given:

db(t)
dt

= µ(s(t))b(t)−mb(t), 0 < t ≤ T
ds(t)
dt

= −kµ(s(t))b(t), 0 < t ≤ T
de(t)
dt

= pµ(s(t))b(t), 0 < t ≤ T

b(0) = b0, s(0) = s0, e(0) = e0

(50)

Considering that µ(s) is function describing specific growth rate, the
following properties are required:
- µ(s) is continuous,
- µ(s) > 0,∀s > 0,
- µ(0) = 0.
It can be proven that in the case of m > 0 Proposition 1 (for ex-
istence and uniqueness) and Proposition 2 (for positivity) of the
solution of (50) formulated in section 4 for m = 0 still hold. Theo-
rem 1 from section 4 also still holds for the functions s(t) and e(t), i.e.
e(t) is strictly increasing and s(t) is strictly decreasing in the interval
(0, T ) (see the proof of Theorem 1).
From the posivity of b(t) in the interval (0, T ) follows that the sign of
db(t)
dt

is the same as the sign of µ(s(t)) −m. Hence, b(t) is increasing
when µ(s(t))−m > 0 and decreasing when µ(s(t))−m < 0 and fur-
thermore, b(t) → 0 as t → ∞. Due to the independence of the first
two equations from the system (50) from third one for simplicity of
the analysis the following system will be investigated:

db(t)
dt

= µ(s(t))b(t)−mb(t), 0 < t ≤ T
ds(t)
dt

= −kµ(s(t))b(t), 0 < t ≤ T

b(0) = b0, s(0) = s0.

(51)
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First of all its points of equilibrium are found by solving the system:{
µ(s(t))b(t)−mb(t) = 0

−kµ(s(t))b(t) = 0.
(52)

Obviously, each pair (0, s) is a solution. If b(t) 6= 0, then system (52)
is equivalent to {

µ(s(t))−m = 0

−kµ(s(t)) = 0.
(53)

The latter is incompatible because m > 0. Hence, the solutions of
(52) are only (0, s),∀s ∈ R.
The next step is to evaluate the stability of those equilibrium points.
The Jacobi matrix of system (51) has the following form:

J(b, s) =

[
µ(s)−m µ′(s)b
−kµ(s) −kµ′(s)b

]
. (54)

Then

J(0, s) =

[
µ(s)−m 0
−kµ(s) 0

]
. (55)

Obviously the eigenvalues of (55) are λ1 = 0 and λ2 = µ(s) −m and
therefore (0, s) is a stable equilibrium if λ2 < 0, i.e. µ(s)−m < 0. In
other words, when mortality prevails over growth, the biomass starts
declining to zero. This, of course, totally makes sense from a biological
point of view.

7.2 Fractional order derivative model

The next step is to investigate whether the properties obtained for the
classical model with mortality of the biomass also hold for fractional
values of β and σ in the interval (0, 1]. The numerical procedure here
is similar to the one that was presented in section 6 for the case with-
out mortality. It consists of the following two experiments:
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First experiment: Knowing the behaviour of the solution of (51) de-
pending on the different values of the mortality coefficient m and the
initial conditions in the classical case, the purpose of this experiment is
to see whether similar conclusions can be made also for the fractional
order derivative case. For this experiment the value of β is fixed and
σ is taking different values in the interval (0, 1). The system (51) is
numerically solved via Adams-Bashforth-Moulton predictor-corrector
method. Different values of m are taken such as:
(a) µ(s)−m has a solution (changes its sign) in the interval (0, s0),
(b) µ(s) − m does not have a solution (does not change its sign) in
the interval (0, s0).
Note 1: The derivative orders for every experiment for the case in
question are chosen in order to satisfy the experimentally established
conditions for maintaining monotonicity in the non-mortality case.
Briefly, β ≥ σ. For the First experiment β = 1 is fixed and σ
takes different values in the interval (0, 1]. In particular, results for
the classical case are also presented.
Note 2: If µ(s) −m does not change its sign in the interval (0, s0)
plus the fact that s(t) is decreasing and hence, takes values only in
this interval, means that it is logical to expect that b(t) is monotonic
in this case. Furthermore, µ(0) = 0, thus µ(0) − m < 0,∀m > 0.
Finally, if µ(s)−m does not change its sign in the interval (0, s0), so
µ(s)−m < 0, i.e. b(t) should be decreasing in (0, T ).
Second experiment: In was already commented that in the classi-
cal case depending on the value of m and the initial conditions b(t)
is either a decreasing function, either increasing until a certain mo-
ment in time and then starts to decrease. In each case b(t) is not an
increasing function in the whole interval (0, T ). The purpose of this
experiment is for fixed m to eliminate the values of σ and β in the
interval (0, 1] for which the approximate solution B of (51) is increas-
ing in the whole interval (0, T ). The algorithm of the experiment is
similar to the one described for the Second experiment in section
6 for the case without mortality of the biomass. First, the system
(51) is solved for given β, σ and m via the Adams-Bashforth-Moulton
predictor-corrector method. A counter is set at 0. After the approx-
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imate solution (B, S) is calculated, the following check begins: For
j = 0, ...,M − 1, if Bj+1 > Bj, then the counter increases with 1.
The output of the method is boolean, i.e. 0 or 1: if the value of the
counter after the check is completed is less than the number of itera-
tions M , then the output is 1 and otherwise it is 0. In other words, if
the counter equals M , this means that Bj+1 > Bj, j = 0, ...,M , i.e. B
is strictly increasing in the set interval (0, T ) so the corresponding val-
ues of σ and β should be excluded. Graphically the result of a single
calculation of the method is represented by a point with coordinates
(σ, β) by multiplying those coordinates with the result form the algo-
rithm, i.e. 0 or 1. This way, when different values of σ and β are used
for a particular value of m, on the corresponding graph appear only
the points whose coordinates (σ, β) are not excluded by the algorithm.
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7.3 Numerical results for Monod model

Note 1: Everywhere in this subsection s1 denotes the solution of
µ(s) = m in the interval (0, s0).
Note 2: The values of σ and β for the numerical calculations are
chosen in order to meet the requirements for monotonicity of B in the
case without mortality of the biomass, i.e. σ ≤ β.

Figure 10 represents the results from the First experiment when

(a) (b)

(c) (d)

Figure 10: Graph of the approximate solution B (left) and S (right),
Monod model, m = 0.03/0.25, s1 = 34/0.58, β = 1, parameters
(23)/(24)
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the value of m is chosen such that µ(s1) = m for s1 ∈ (0, s0). Monod
model with parameters (23), m = 0.03, s1 = 34 (figures 10a and 10b)
and (24), m = 0.25, s1 = 0.58 (figures 10c and 10d) is used. The blue
graph represents the classical model (β = σ = 1) and the behaviour of
its solution meets the expectations for the case when µ(s)−m changes
its sign in the interval (0, s0): B is increasing until a certain moment
t1 ∈ (0, T ), s(t1) = s1 and then starts to decrease. S is decreasing and
tending to 0. For the fractional values of σ – σ = 0.75, 0.5, 0.25 the
behaviour of B is similar to that in the classical model. However, it is
seen on the figures on the left that in the cases when σ < 1 S starts
to increase at a certain moment which is not logical for the process.

Figure 11 represents the results from the First experiment when
the value of m is chosen such that µ(s) −m does not change its sign
in the interval (0, s0). Monod model with parameters (23), m = 0.07
(figures 11a and 11b) and (24), m = 0.25, (figures 11c and 11d) is
used. The blue graph represents the classical model (β = σ = 1) and
the behaviour of its solution meets the expectations for the case when
µ(s)−m does not change its sign in the interval (0, s0): B and S are
decreasing in the interval (0, T ). Like in the previous case, for the
fractional values of σ – σ = 0.75, 0.5, 0.25 the behaviour of B is similar
to that in the classical model but in the cases when σ < 1 S starts to
increase at a certain moment which is not logical for the process (it is
visible on figure 11b).
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(a) (b)

(c) (d)

Figure 11: Graph of the approximate solution B (left) and S (right),
Monod model, m = 0.07/0.55, β = 1, parameters (23)/(24)
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(a) (b)

(c) (d)

Figure 12: Graph of the approximate solution B (left) and S (right),
Monod model, m = 0.7/2, β = 1, parameters (23)/(24)

Figure 12 also represents results from the case when the sign of
µ(s) − m remains unchanged in the interval (0, T ) for larger values
of m. Monod model with parameters (23), m = 0.7 (figures 12a and
12b) and (24), m = 2 (figures 12c and 12d) is used. In this case the
behaviour of B for the different values of m does not differ from that
in the classical case (see figures 12a and 12c). On one hand, this case
compared to the previous one shows that the larger the value of m, the
faster B is decreasing which is logical considering that m denotes the
mortality of the biomass. On the other hand, the illogical increasing
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of S for σ < 1 is even more noticeable for larger values of m.

(a) (b)

Figure 13: Graphs of the approximate solution S, Monod model, β =
0.75, parameters (23), m = 0.07 – (a) and (24), m = 0.55 – (b)

The results presented so far on figures 10 – 12 show that when mor-
tality of the biomass is included in the model, β = 1 and σ ∈ (0, 1):
- the behaviour of B follows the logic of the classical model depending
on the different values of m which define the sign of µ(s)−m
- in some cases, especially for larger m, when σ < 1, S is increasing
which is not logical for the process.
The following question arises: For which values of β and σ the be-
haviour of S does not make sense and are there any requirements for
those values in order to prevent such kind of behaviour? Although the
results presented so far in this section do not provide a clear answer to
this question, based on them and additional calculations for β = 0.75
and σ ∈ (0, 1), σ ≤ β it can be assumed that the illogical behaviour
of S appears when σ < β and does not appear when σ = β. Figures
13 and 14 represent the graphs of S in the case when µ(s) −m does
not change its sign in the interval (0, s0). It is seen that only when
σ = β = 0.75 (the blue graphs) S is decreasing which corresponds to
the bioprocess that is being modeled.

Figure 15 represents the result from the Second experiment de-
scribed in this section. The points on the figure represent those (σ, β)
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(a) (b)

Figure 14: Graphs of the approximate solution S, Monod model, β =
0.75, parameters (23), m = 0.7 – (a) and (24), m = 2 – (b)

for which the solution B of (19) is not increasing in the case when
µ(s1) = m for some s1 ∈ (0, s0). For the numerical calculations σ and
β take values in a uniform mesh with step 0.2 on the part of the unit
square where σ ≤ β. Every point of this mesh is on the figure which
leads to a conclusion that if σ ≤ β B is not increasing in the interval
(0, T ). The results from this experiment are only primary and show
that there is no reason to eliminate any of (σ, β) for which σ ≤ β when
it comes to the behaviour of B.
Note: Only one figure is presented as a result from the Second ex-
periment because for other values of m the figures look the same.
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Figure 15: Numerical results from the Second experiment represent-
ing the points with coordinates (σ, β) for which B is not increasing in
the whole interval (0, T ). Monod model with parameters (23) is used.
m = 0.05, s1 = 85
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8 Conclusions and future work

This section summarizes the main results from this thesis. At the
end, some future development plans on the subject are noted.

Here are the main conclusions from what is done so far:
1. The fractional order derivative models are gaining more and more
popularity lately. Recent experiments show that it is more suitable
for some processes (mainly biological) to be modeled with a fractional
order derivative models. The main reason for this is the quantitative
superiority of this type of models – especially for the memory effect
which is important for the accuracy of the bioprocesses. There is,
however, a serious drawback of using the fractional derivative models,
which goes together with the advantages.
2. The negative side of working with fractional models is the lack of an
analytical approach to fractional derivatives in general which makes it
difficult to determine some essential for the model properties (such as
monotonicity, for example). Therefore, it is necessary to study them
numerically with appropriately modified numerical methods.
3. For the problem, subject of this work, different scenarios are con-
sidered and based on significant number of numerical experiments,
some empirical hypotheses are derived:
3.1. Firstly, the behaviour of the (numerical) solution of the model
without mortality of the biomass is observed. A comparison between
the classical and the fractional derivative model is made. The con-
clusion is that there exist certain dependencies between the orders of
the derivatives for which the classical monotonicity properties remain
unchanged:
(a) For σ ≤ β b is increasing and for σ > β b is not increasing for at
least one set of parameters of the model,
(b) For σ ≤ ε e is increasing and for σ > ε e is not increasing for at
least one set of parameters of the model.

3.2. The second main observation concerns the case when mor-
tality of the biomass is included in the model. Adding the mortality
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term to the right side of the first equation of the model affects its
sign and hence the behaviour of b(t). After the conduction of several
experiments, the following conclusion can be done:
The behaviour of the numerical solution B meets the requirements of
the classical case for values of β and σ that satisfy the conditions for
monotonicity in the classical case (i.e. σ ≤ β). However, one can
notice that if σ < β, the approximate solution S starts to increase
which completely contradicts with the biological point of perspective of
the problem. This anomaly is probably due to the inappropriate choice
of some of the parameters.

To continue the study of the bioreactor modelling and to extend
the obtained first results, the following tasks are yet to be performed:
1. To combine the diffusion and the fractional order derivative model,
i.e. to expand the diffusion model for fractional values of β, σ and
ε in the interval (0, 1] and see if the dependence of the approximate
solution E and the diffusion coefficient d remains similar to that in the
classical case. An appropriate numerical method is to be chosen for
that purpose.
2. To upgrade the results obtained for the mortality-included case in
terms of the approximate solution S – the substrate, and try to find
out the reason for its non-logical behaviour in particular cases.
3. It is logical that as two separate processes, the microbial growth
and the mortality of the bacteria have different fractional evolution.
Therefore it is reasonable to consider the system (19) in the following
form:

db(t)
dt

= D1−β1 [µ(s(t))b(t)]−D1−β2 [mb(t)], 0 < t ≤ T

Dσ
∗ s(t) = −kµ(s(t))b(t), 0 < t ≤ T

Dε
∗e(t) = pµ(s(t))b(t), 0 < t ≤ T

b(0) = b0, s(0) = s0, e(0) = 0, β1, β2, σ, ε ∈ (0, 1].

(56)

Note that now in the first equation the right side is that contains
fractional order derivative operators, not the left one, as it is in the
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case of (19). Only if β1 = β2 = β, then

db(t)

dt
= D1−β[µ(s(t))b(t)−mb(t)] (57)

is equivalent to
Dβ
∗ b(t) = µ(s(t))b(t)−mb(t). (58)

The main purpose is to find out how do the different values of β1

and β2 affect the behaviour of the approximate solution and are there
similarities with the classical model.
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