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Abstract

In the present work we give an overview and implemen-
tation of an algorithm for building and integrating dynamic
systems from reaction networks. Reaction networks have their
roots in chemical reaction network theory, but their nature is
general enough that they can be applied in many fields to
model complex interactions. Our aim is to provide a simple
to use program that allows for quick prototyping of dynamic
models based on a system of reactions. After introducing the
concept of a reaction and a reaction network in a general way,
not necessarily connected to chemistry, we outlay the algo-
rithm for building its associated system of ODEs. Finally,
we give a few example usages where we examine a range of
growth-decay models in the context of reaction networks.
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1 Introduction

Reaction networks have their origin in chemistry. As the name sug-
gests, they consist of a number of reactions between elements. In
chemistry a reaction represents an interaction between two or more
molecules which produces molecules of one or more other (or the
same, when we have a catalyst) elements.

The formalism of reaction networks has proven useful in modeling
a wide range of systems [1]. Reaction networks are a natural way to
represent systems in which the interactions among entities are trans-
formational in nature. In this context, the familiar chemical reaction
becomes a specific example of an interaction between elements of a
system which results in the quantity of these elements diminishing
and the quantity of other elements increasing. The same concept is
readily applicable to a wide range of systems, including ecological [2],
social [3] and political [4] ones.

We seek to implement an algorithm for simulating the dynamics of
a system that has been described using the formalism of reaction net-
works. This is done by defining a small domain specific language for
representing reaction networks that matches the natural way chem-
ical reactions are written out. This language is then parsed using
regular expressions [10] to determine the underlying structure of the
reaction network (stroichiometry). From this a system of ODEs is
build in a form which can be integrated using the scipy[11] library.

There are well documented and extensive solutions to this prob-
lem ([15], [14]), which come with a plenitude of other features as well
and allow for a much deeper and more complete analysis of a reac-
tion network system. Our goal is to present a streamlined and easy
to use program that can be used for quick prototyping of different
configurations of reaction networks.

In the next section we introduce the main concepts of the reaction
networks formalism and the construction of systems of ODEs from
systems of reaction networks. In section 4, we lay out the algorithm
that we use to automatically building the right hand sides of the
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ODEs given the structure of the reaction network. After that we
give details on the actual implementation of said algorithm in code
and then give a few examples of the usage of our program to analyze
a number of reaction networks.

2 Reaction network kinetics

We generalize the concept of a reaction network in the following way:
the elements (labeled with capital letters {A,B, ..., Ai, ...}) and re-
actions are abstract and we are not concerned with the real world
representation of these elements and reactions. A reaction represents
interaction between members of the set of elements (reactants) that
produce other elements of the set (products). A reaction is thus an
ordered pair of multisets - the first one containing reactants and the
second one products, along with real number denoting the rate of the
reaction. For example:

A+B
k−→ C. (1)

Here we have a reaction between the reactants A and B that react
with rate k to produce C. If an element appears on both sides of the
reaction, it is said to be a catalyst. For example:

A+B
k−→ A+ C. (2)

The element A catalyses the reaction - it’s mass does not change, but
it is needed for the reaction to take place.

It’s important that the two sides of the reactant are multisets, i.e.
a reactant or a product can appear multiple times in either side:

A+B
k−→ C + C +D, (3)

in which case the mass of the element C increase twice as fast as the
mass of the element D.

Each reaction can be translated to a system of ODEs that describe
the dynamics of the reaction using the mass action principle. We
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describe the mass of each element A,B, ... by a function of time,
denoted with the corresponding lower case letter a(t), b(t), .... By the
mass action principle the rate of change of the mass of each element
is proportional to the masses of the reactants on the left side of the
arrow and the rate of the reaction. Whether the mass of the element
increases of decreases depends whether it’s a reactant or a product.
For example, for the reaction (1), we would have;

ȧ(t) = −ka(t)b(t)

ḃ(t) = −ka(t)b(t)

ċ(t) = ka(t)b(t).

If an element is a catalyst, it appears on both sides of the reaction.
In this case, it’s rate of change would have two terms with opposite
signs that cancel out. For the reaction (2):

ȧ(t) = −ka(t)b(t) + ka(t)b(t) = 0, (4)

which shows that the mass of a catalyst does not change.
If an element appears more than once on either side of the reac-

tion, this is reflected by a multiplicative factor in the equations For
the reaction

A+B
k−→ A+ A+ C

we have the equation:

ȧ(t) = −ka(t)b(t) + 2ka(t)b(t) = ka(t)b(t)

Additionally, if an element appears multiple times on the left side of
the reaction, this is reflected by an exponential factor in the ODEs.
For example, for the reaction

A+ A
k−→ B

we would have the equations:

ȧ(t) = −2ka(t)2

ḃ(t) = ka(t)2.
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We see that we have both the multiplicative factor 2 as in the pre-
vious point, but also an exponential factor 2 in the flow law. This
can be seen intuitively from the chemical origin of the reactions. If
an element appears twice as a product of a reaction, each time the
reaction occurs, two units of mass of the product are produced - we
have a linear dependency between the rate of change of the mass and
the intensity of the reaction.

The same logic leads to the multiplicative factor if the element
appears twice on the left hand side - two molecules of the element are
needed for the reaction to occur. In this case however, the mass of
the element also influences the probability of the reaction occurring.
At very low concentrations of the reactant, the reaction becomes
very unlikely to occur. This means that the rate of the change of
the reactant tends asymptotically to zero. This is reflected in the
exponential dependency of the negative rate of change to the reactant
mass.

2.1 A system of reactions - a reaction network

We can easily extend the above to support systems of multiple reac-
tions. If an element is present in more than one reactions, it’s rate
of change is the sum of the terms for each individual reaction. For
example, for the system of reactions:

A+B
k1−→ C

D + C
k2−→ B

we would have the following system of ODEs (we omit the obvious
dependence on the time t for brevity):

ȧ = −k1ab
ḃ = −k1ab+ k2dc

ċ = k1ab− k2dc
ḋ = −k2dc
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Our goal is to implement an algorithm for finding the functions
on the right hand side of the system given a reaction network. This
system can then be integrated using any method for integration of
first order ODEs.

3 Formal definition of a reaction

In this section we will define a reaction in such a way that will al-
low us to more easily outlay the algorithm in the next section. Let
E = {Ai}ni=1 denote the set of elements that appear in a reaction
(both reactants and products). As we said earlier, a reaction can
be represented as an ordered pair of multisets with elements in E.
However, we also want a convenient way of determining if an ele-
ment appears on either side of a reaction at all. It is more fitting
to represent these mutlisets as tuples of coefficients corresponding to
each element, where a coefficient of 0 signifies that an element does
not belong to the multiset, i.e. does not appear in this side of the
reaction.

Following the notation in [6], we define a reaction ρ as:

ρ :
n∑
i=1

liAi
k−→

n∑
i=1

riAi (5)

where li and ri are the coefficients of the elements in the reaction and
k is the rate of the reaction. If a coefficient is 0 it means that the
corresponding element does not appear on the corresponding side of
the equation.

For ease of use with the alphabetical notation of the elements
(A,B, . . . ) we also write the coefficients as functions of the elements:

l : E → Z (6)

Ai 7→ l(Ai) = li (7)
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for the reactant side and

r : E → Z (8)

Ai 7→ r(Ai) = ri (9)

for the product side. This allows us to write for example l(B) without
overburdening the index notation.

For example, for the reaction

A+ A+B
k−→ B +B + C +D

the set of all elements is E = {A,B,C,D}. The left hand side
(reactant) coefficients are:

l(A) = 2, l(B) = 1,

l(C) = l(D) = 0,

while the right hand side (product) coefficients are:

r(B) = 2, r(C) = 1

r(D) = 1, r(A) = 0.

4 Building systems of ODEs from reac-

tion networks

In this section we will lay out a procedure for building the ODEs
governing the dynamics of a reaction network system. In this we fol-
low [5] along with an application of our definitions from the previous
section.

4.1 Single reaction

Let’s first look at an example of how the system of ODEs for a single
reaction is built. We have the reaction:

A+ A+B
k−→ A+ C
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The corresponding system is:

ȧ(t) = −2ka(t)2b(t) + ka(t)2b(t) = −ka(t)2b(t)

ḃ(t) = −ka(t)2b(t)

ċ(t) = ka(t)2b(t)

As we can see, all the ODEs are of the form ḟ(t) = sfka(t)2b(t),
where sf ∈ Z. We call

ϕ(t) := ka(t)2b(t)

the flow law of the reaction. It represents the intensity of the reaction
and it is determined only by the masses of the reactants (left side of
the reaction) and the rate k of the reaction. If our reactions represent
interaction between discrete elements (ex. molecules in a solution),
we can think of the rate law as a number of interaction per unit time.

Given the rate law, we can determine the rate of change of the
masses of the elements by looking at the amounts of an element that
are consumed or produced by the reaction. In our example reaction,
one unit of the element C is produced, so sc = 1 and ċ(t) = ka(t)2b(t).
Similarly, one unit of the element B is consumed by the reaction, so
sb = −1. For the element A, two units of mass are needed for the
reaction to occur and one unit of mass is left after the reaction. It
follows that sa = −2 + 1 = −1. As we can see, the coefficient sf in
the ODEs corresponds to the difference of the coefficients r(A)−l(A).

More rigorously, let E = {Ai}ni=1 be the elements of a reaction.
A reaction ρ is a 3-tuple (l, r, k), where l and r are the coefficient
functions. Let’s denote:

si = r(Ai)− l(Ai),

which we will call the stoichiometry of the element Ai. Let ai(t)
be the mass of the element Ai at time t. Then the rate law of the
reaction is:

ϕ(t) = k

n∏
j=1

aj(t)
l(Aj)
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and the rate of change of the mass ai(t) is:

ȧi(t) = siϕ(t)

Both when generalizing for a system of reactions and when im-
plementing the algorithm in code, it will be easier to work in vector
notation. Without loss of generality, we can order the elements in
an n-tuple AAA = (A1, . . . , An). Using this ordering we can define the
vector of masses aaa(t) = (a1(t), . . . , an(t))T and a stoichiometry vector
of the reaction sss = (s1, . . . , sn)T . Then:

ȧaa(t) = ϕ(t)sss (10)

We can see that the rate law ϕ(t) of a reaction depends only on the
left side of the reaction. That is to say, the intensity of the reaction
does not depend on the concentrations of the products of the reaction
(unless those products are also reactants). The stoichiometry vector
on the other hand gives us a notion of the effects of the reaction
on the masses of the elements and it depends on both sides of the
reaction.

4.2 Reaction network

The generalization of the above to a reaction network is straightfor-
ward. As we said, the rate of change of an element that is present
in more than one reaction is just the sum of the rates of change that
are caused by each reaction individually. A reaction network is a set
of reactions

{ρi = (li, ri, ki)}pi=1 (11)

between a set of elements E. Here li and ri are the reactant and
product coefficient functions for the i-th reaction.

As we did for the elements we can order the reaction in a p-tuple
ρρρ = (ρ1, . . . , ρp) without loss of generality. Using this we can define a
vector of rate laws of the reaction network ϕϕϕ(t) = (ϕ1(t), . . . , ϕp(t))

T ,
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where

ϕj(t) = kj

n∏
i=1

ai(t)
lj(Ai).

For a single reaction we labeled as si the stoichiometry of the
element Ai. For a reaction network we define

sij := rj(Ai)− lj(Ai)

the stoichiometry of the element Ai in the reaction ρj.
The rate of change of the element Ai due to the reaction ρj is

sijϕj(t). The rate of change of an element in a reaction network is
the sum of the rates of change due to each individual reaction:

ȧi(t) =

p∑
j=1

sijϕj(t)

In vector notation the rate of change of the mass vector aaa(t) =
(a1(t), . . . , an(t))T is:

ȧaa(t) = SSS ·ϕϕϕ(t), (12)

where we have defined SSS = (sij) ∈ Z(n×p) as the stoichiometry matrix
of the reaction network.

We have arrived at our desired representation of the system of
ODEs that describes the dynamics of a reaction network. In the
next section we will describe briefly how this is implemented in the
programming language python [8].

5 Implementation

The functionality that leverages this algorithm can be found in the
git repository https://github.com/PetarChernev/reaction-net

works hosted on GitHub [9]. Here we will give a quick overview of
the implementation.
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1. We take as input the definitions of the reaction network sepa-
rated by ; (and optionally newlines) and an array of numbers
for the rates of the reactions. For example, the Gompertz re-
action networks is given by:

S + X -> 2X + S;

S -> Q

with some rates

rates = [1, 0.2]

2. Using regex [10] we determine the set of all elements E and
define the reactions in a manner that complies with the defini-
tion of reaction (5). In python this can be done out of the box
using the collection.Counter builtin class. It accepts a col-
lection of items (in our case capital letter characters) and gives
you the count of how many times each item is encountered in
the collection, returning 0 if the item is not encountered in the
collection.

3. Using the above Counter objects, we calculate the stoichiome-
try matrix of the reaction network, which is static throughout
the integration of the system.

4. The rate laws for the reaction network are expressed as a prod-
uct of the masses of the elements as functions of time. They
are defined as a callback function that accepts the mass vector
of the system as an argument. This function is called at each
step of the integration to determine the rate laws at this time.

5. Given a vector of initial masses, the resulting IVP is integrated
using the functionality in the scipy[11] library, namely
scipy.integrate.solve ivp. By default this function uses an
explicit Runge-Kutta method of order 5(4).

6. The result of the integration can then be plotted using the
matplotlib[13] package.
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6 Example usage

In this section we give a few examples of the usage of our implemen-
tation.

6.1 x(t) for the logistic, Gompertz and mixed
models

In this section we follow the definitions in [7] and show how our
implementation can be used to simulate and visualize the models in
question.

We are interested in examining the differences between the logistic
and the Gompertz growth and decay models. The logistic model is
defined by the reaction network:

S +X
k−→ 2X,

meaning that X self catalyses the reaction. The reaction networks of
the Gompertz model is

S +X
k−→ 2X + S

S
ν−→ Q

Here both X and S are catalysts of the first reaction. The second
reaction represents a decay of S with time. Q is an external reactant
- its mass does not influence the dynamics of the system and its mass
and rate of change are ignored when building the ODEs of the system.

Additionally, we examine a mixed model. In the logistic model
the element S turns into the element X with time, which leads to
an eventual equilibrium of the system. In the Gompertz model the
element S is not lost in the first reaction, but rather decreases with
time into the external element Q, which again leads to equilibrium, as
it is a catalyst of the first reaction. We can combine the two models
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in the mixed model:

S +X
k−→ 2X + S

S
ν−→ X

Here again S decreases over time and it is required for both reaction
to occurs, which leads to equilibrium. However there is not external
element Q - the second reaction turns S into X.

From [7] we know that the dynamical systems of two variables
induced by the reaction networks in question have a first integral
of the system which remains constant during the evolution of the
system:

c(s(t), x(t)) = c(s(0), x(0)), ∀t (13)

The exact forms of c(s, x) are such that for any chosen x(0), we can
choose s(0), such that c(s(0), x(0)) = c(0, 1).

For the three models we are examining s(∞) = 0. Using the
second property we can make sure that x(t) tends asymptotically to
1 for any value of x(0). This allows is to plot the trajectories of x(t)
for the three models on the same scale and compare their behaviour.
Some example plots are given below (Fig. 1, 2, 3)

Figure 1: x(t) for the logistic, Gompertz and mixed models with all
rates equal to 1
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Figure 2: x(t) for the logistic, Gompertz and mixed models. We can
see that just changing k for the Gompertz model does not affect the
trajectory, because of the scaling of c(s(0), x(0)) that we do to keep
the asymptotic behavior.

Figure 3: x(t) for the logistic, Gompertz and mixed models

6.2 Vector fields of the dynamic system for the
logistic and Gompertz models.

Every system of ODEs of the form

ẋxx = f(xxx(t))
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defines a vector field over the state space of possible values of xxx. Using
equation (12), we can do this for our reaction networks. In Fig. 4 and
Fig. 5 we have the vector fields for the logistic and the Gompertz
models respectively. We can see that the vector fields reflect the
integral curves for the systems that arise from the constant functions
c(s(t), x(t)) mentioned in the previous point. For the logistic model
we have [7] :

c(s(t), x(t)) = s(t) + x(t) = const.

and so we see the integral curves are straight lines x+ s− c. For the
Gompertz model we have [7]:

c(s(t), x(t)) =
k

ν
s(t) + ln x(t) = const.

and the integral curves are of the form k
ν
s(t) + ln x(t)− c.

Figure 4: The vector field corresponding to the dynamic system for
the logistic model.
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Figure 5: The vector field corresponding to the dynamic system for
the Gompertz model.

Figure 6: x(t) for the Gompertz for different values of ν.
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6.3 x(t) for the Gompertz
model with different values of ν.

In Fig. 6 we plot the trajectory of x(t) for the Gompertz model for
different values of the second reaction coefficient ν.

6.4 Comparison of the trajectory of x(t) for the
logistic and Gompertz models.

As we can see in Fig. 1, for klogistic = kL = 1 and kGompertz = kG =
1, νG = 1, xL(t) for the logistic model is always lower than or equal to
xG(t) for the Gompertz model. In Fig. 3 however, we have increased
kL to 2.56. This causes the logistic model xL(t) to cross over the
Gompertz model xG(t). We are interested in seeing for which values
of the parameters kL and ν there is a crossover and for which there is
an inequality for all t. We can do this by integrating the systems for
different values of the parameters and comparing the solutions. The
result of this computation is shown in Fig. 7.

This numerical integration of pairs of system is really computa-
tionally expansive. We can examine this behavior by calculating the
difference between the trajectories directly. From [7] we know that
xL(t) can be expressed as:

xL(t) =
x0

(1− x0)e−kLt + x0

and xG(t) as:

xG(t) = x
exp(−νt)
0
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Figure 7: A comparison of the trajectory of x(t) for the logistic and
the Gompertz models for different values of kL and ν by numerical
integration of pairs of systems.

We are interested in the sign of the difference:

δ(t; kL, ν) = xL(t)− xG(t)

=
x0

(1− x0)e−kLt + x0
− xexp(−νt)0

=
x0

e−kLt + (1− e−kLt)x0
− xexp(−νt)0

=
x0 − e−kLtxexp(−νt)0 − (1− e−kLt)x1+exp(−νt)

0

e−kLt + (1− e−kLt)x0
The denominator is strictly positive. By calculating the numer-

ator for different values of t at different pairs of values for the pa-
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Figure 8: A comparison of the trajectory of x(t) for the logistic and
the Gompertz models for different values of kL and ν by computation
of the theoretical difference δ(t) = xL(t)− xG(t).

rameters (kL, ν), we can examine the relative behavior of the two
trajectories. The result of this computation are given in Fig. 8

We can see from the two figures that we get similar results. There
is a slight nonlinearity in the crossover region for the figure derived
from integration of pairs of systems. This is due to the fact that both
trajectories of the pairs of systems tend very quickly to 1 for higher
values of the parameters, and so the computed difference δ(t; kL, ν)
is very close to 0 for the majority of the time interval. This causes
inaccuracies in detecting a crossover. This is yet another advantage
of computing an explicit theoretical formula for the difference.
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6.5 Gompertz-Bateman reaction network

We apply the algorithm to the Gompertz-Bateman growth-decay
model [12]:

S
k1−→ P

k2−→ Q

P +X
k−→ 2X + P,

where Q is an external reactant. We can also use the program to
print the system of ODEs that is generated by the reaction network
in question:

p’=k_1s-k_2p

s’=-k_1s

x’=kpx

or generate valid LaTeX for an align environment:

ṗ(t) = k1s− k2p
ṡ(t) = −k1s
ẋ(t) = kpx

This dynamical system has a conservation relation:

c(t) =
k

k2
(p− s) + ln x = const. (14)

We can use this first integral of the system to determine the initial
conditions in such a way that the system reaches a steady state with
x(∞) = 1, p(∞) = s(∞) = 0:

c(0) =
k

k2
(p0 + s0) + ln x0 = c(∞) = 0

x0 = e
− k

k2
(p0+s0)

If we choose initial masses p0 = s0 = 1, we see that we need to

set x0 = e
−2 k

k2 to achieve the desired behaviour x(∞) = 1. A plot
of a numerical simulation of the system with these initial conditions
and reaction rates k = k1 = k2 = 1 is shown in Fig. 9.
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Figure 9: The mass trajectories for the Gompertz-Bateman growth-
decay model with a steady state at x(∞) = 1 and reaction rates
k = k1 = k2 = 1.

6.6 Modified Gompertz-Bateman growth-decay
model

We can modify the above model by removing the external reactant
Q and having the reactant P turn into X directly, as well as being a
catalyst to the growth function:

S
k1−→ P

k2−→ X

P +X
k−→ 2X + P,

The induced dynamic system is:

ṗ(t) = k1s− k2p
ṡ(t) = −k1s
ẋ(t) = kpx+ k2p
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Proposition 1. The above system has a conservation relation:

c(t) = s(t) + p(t) +
1

γ
ln(γx(t) + 1), (15)

where γ = k
k2

.

Proof. We take the sum:

ṡ+ ṗ = −k2p = −k2
ẋ

kx+ k2
=

ẋ

γx+ 1

Integrating this gives:

s(t) + p(t) = −
∫ t

0

dx

dτ

1

γx+ 1
dτ + c

= −1

γ

∫ t

0

d(γx+ 1)

dτ

1

γx+ 1
dτ + c

= −1

γ

∫ t

0

d ln(γx+ 1)

dτ
dτ + c

= −1

γ
ln(γx(t) + 1) + c

This gives the first integral:

c = s(t) + p(t) +
1

γ
ln(γx(t) + 1), (16)

which remains constant throughout the integration of the system.

Using the above relation and having fixed s0 and p0, we can once
again choose x0 such that x(∞) = 0. For the initial conditions we
have:

c(0) = s0 + p0 +
1

γ
ln(γx0 + 1). (17)

The mass s(t) is strictly decreasing, so in the steady state we have
s(∞) = 0. The mass p(t) has a positive term in the derivative, which
is proportional to s(t). In the limit it is also strictly decreasing:

lim
t→∞

ṗ(t) = −k2p(t),
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so again in the steady state we have p(∞) = 0. In a sense the reaction
network ”uses up” the reactants S and P to produce the reactant X.
We want to impose the condition x(∞) = 1. In the steady state, the
conservation relation is:

c(∞) =
1

γ
ln(γ + 1) (18)

Since we have c(0) = c(∞), we can solve (17) and (18) for x0:

x0 =
1

γ

( γ + 1

eγ(s0+p0)
− 1
)

(19)

The masses of the reactants are non-negative, so we must have
x0 ≥ 0. This imposes a constraint on the possible initial conditions
for s0 and p0 such that x(∞) = 1:

s0 + p0 ≤
1

γ
ln(γ + 1). (20)

In Fig. 10 we can see a plot of the trajectories of the masses for
a modified Gompertz-Bateman system with k = k1 = k2 = 1. With
these reaction rates, the constraint (20) becomes:

s0 + p0 ≤ ln 2 = 0.693. (21)

For the plotted solution we have chosen initial conditions s0 = 0.5,
p0 = 0, which leads to a choice of x0 = 0.213 under our condition
x(∞) = 1.

We can see the the mass of the reactant P increases at first due
to the reaction S

k1−→ P , which causes an acceleration in the growth
of the reactant X. That is until a maximum is reached, after which
the time derivative of p(t) is dominated by the −k2p term. After that
point, both s(t) and p(t) decrease until a steady state is reached.
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Figure 10: The mass trajectories for the modified Gompertz-Bateman
growth-decay model with a steady state at x(∞) = 1 and reaction
rates k = k1 = k2 = 1.

7 Conclusion

In the present work, we have out lined a straightforward algorithm
for building a system of ODEs from a reaction network. We have
implemented this algorithm in a GitHub repository along with func-
tionality to solve the IVPs given by said systems of ODEs and plot
the solutions in different forms and show some example applications
of the algorithm. We also implement functionality for choosing the
initial conditions based on asymptotic conditions on the mass trajec-
tories at infinity by use of first integrals of the system.

Compared to well known and established systems in the same
domain ([15], [14]), our implementation is extremely simple. This
simplicity however, provides a streamlined and simple to use tool for
quick iteration over different configurations of reaction networks and
their associated dynamical systems.
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