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Introduction. The Allee effect is a phenomenon in biology charac-
terized by a positive correlation between population density (size) and its
per capita growth rate [1]. In their book, Courchamp et al [3], the au-
thors described the Allee effect in a straightforward manner: “The more
the merrier”. This effect is simply a casual positive relationship between
the number of individuals in a population and their “overall individual fit-
ness.” The more individuals there are, up to a point, the better they fare.
So as population size approaches a threshold, favorable influences stimu-
late its growth, and when it goes below it, unfavorable influences inhibit
its growth. From their point of view, the Allee effect may be described
as a notion of positive density dependence in which the “overall individual
fitness”, or one of its components, is positively related to population size or
density [3]. However, Lidicker [8] recently proposed that Allee effect may
be described and defined in terms of demographic processes. He explained
that “Allee effects are expressed at the population level of organization, and
the parameters of interest are the population proponents of growth rates,
recruitment rates, loss rates, equilibrium densities, and perhaps, success in
establishing new populations.”

Some authors make a distinction between strong Allee effect and weak
Allee effect: a strong Allee effect refers to a population that exhibits a
“critical size or density” below which population declines to extinction and
above which it survives; while a weak Allee effect refers to a population
that lacks a “critical density”, but where, at lower densities, the population
growth rate rises with increasing densities (Stephens et al [11], Lidicker [8])

Stephens et al [11] made the distinction between the component Allee
effect, of particular interest to behaviorists, and the demographic Allee ef-
fect, of overriding concern to conservationists. From these authors’ point of
view, the benefits of conspecific presence may include one or more preda-
tor dilution or saturation; antipredator vigilance or aggression; cooperative
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predation or resource defense, social thermoregulation; collective modifi-
cation or amelioration of the environment; increased pollination or fertil-
ization success, conspecific enhancement of reproduction, and reduction of
inbreeding, genetic drift, or loss of integrity by hybridization. Stephens et
al [11] then put forward a definition of the Allee effect as follows: “The
Allee effect is defined as a positive relationship between any component of
individual fitness and either numbers or density of conspecifics.”

Allee et al [1] provided experimental and field studies that confirmed
the presence of the Allee effect among many species. The examples in-
clude bobwhite quails (Colinus virginianus) that huddle together to lower
the surface presented to cold weather, and the disappearance of tsetse fly
from an area in which the density of the flies fall below a threshold min-
imum density. Allee [1] himself considered two types of Allee effect and
observed the Allee effect caused by reduction in the number of mice, and
the Allee effect caused by reduction in density of flour beetles, Tribolium
confusum. In [11], Stephens and Sutherland described several scenarios
that cause the Allee effect in both animals and plants. For example, cod
and many freshwater fish species have higher juvenile mortality when there
are fewer adults. While fewer red sea urchin give rise to worsening feeding
conditions of their young and less protection from predation. In some mast
flowering trees, such as Spartina alterniflora, with a low density have lower
probability of pollen grain finding stigma in wind-pollinated plants. The
Allee effect may explain one of the most dramatic extinctions of modern
times—that of the passenger pigeon Estopistes migratorius [11].

Model Derivation for Single Species. Let xt be the population
density of generation t, and f(xt) be the per-capita growth rate of the pop-
ulation. Then the dynamics of populations with synchronized generations
are described by the difference equation

xt+1 = xtf(xt) (3)

Allee effect occurs when the per-capita growth rate increases at low densi-
ties, that is f ′(x) > 0 for x sufficiently small. A strong Allee effect occurs if
in addition to the above assumption, there is a positive equilibrium density
A such that the per-capita growth rate f(x) is less than one if x < A and
greater than one for some densities greater than A. As stated by Schreiber
[10], the dynamics of (1) with a strong Allee fall generically into two cate-
gories:

Bistability: if a population initiated at the maximal density M exceeds
the critical density A in the next generation (i.e. Mf(M) > A), then
there is an interval of initial population densities for which the population
persists.

Essential extinction: if a population initiated at M falls below A in the
next generation (i.e. Mf(M) < A), then for almost every initial population
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density extinction occurs.” Screiber [10], then proposed that for species that
possess the strong Allee effect, the per-capita growth rate function f(xt) can
be viewed as the product of two functions, f(xt) = g(xt). I(xt), where g(xt)
represents a negative density factor and I(xt) represents a positive density
factor. In the absence of Allee effect, I(xt) = 1. Thus g(xt) is the per-capita
growth rate of the population in the absence of the Allee effect and may be
one of the various functions that describe the dynamics of single species,
such as the Ricker model, the Beverton-Holt model, the logistic model,
the Hassell model, etc. Many authors [7], [4], [10] classify the Allee effect
factors into two categories: (i) Allee effects caused by predator saturation
and (ii) Allee effects caused by mate limitation. For the Allee effect due
to predator saturation, we let I(x) = exp(− m

1+sx) be the probability of
escaping predation by a predator with a saturating functional response
where m represents predation intensity and s is the proportional to the
handling time (Hassell et al). For instance, if one uses the Ricker model,
the difference equation (1) becomes

xt+1 = xt exp(r(1− xt
k

)− m

1 + sxt
), (4)

the Beverton-Holt model becomes

xt+1 =
µkxt

k + (µ− 1)xt
e
−m

1 + sxt
, (5)

and the Hassell model becomes

xt+1 =
rxt

(1 + kxt)
b
· e −m

1 + sxt
. (6)

Allee effects may be caused by the difficulty of finding mates at low
densities. For instance, in a field experiment, Levitan et all found 0% of a
small dispersed group of sea urchins Strongylocentrotus franciscanus were
fertilized, while an 82.2% fertilization rate twas reported in the center of
a large aggregated group of sea urchins. to model mate limitation, we let
I(x) = sx

1 + sx be the probability of finding a mate where s is an individual’s

searching efficiency (Dennis 1989 [5] ,Scheuring 1999 [9]). Hence the Ricker
model becomes

xt+1 = xt exp(r(1− xt
k

) · sxt
1 + sxt

, (7)

the Beverton-Holt model becomes

xt+1 =
µkxt

k + (µ− 1)xt
· sxt

1 + sxt
, (8)

and the Hassell model becomes

xt+1 =
rxt

(1 + kxt)
b
· sxt

1 + sxt
. (9)
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Brashares et al [2] identified the Vancouver Island Marmot as an en-
dangered species that is on the brink of extinction. This large rodent is
geographically restricted to Vancouver Island and evolved rapidly after its
arrival after glacial retreat 10,000 years ago. The authors provided evidence
of the presence of the Allee effect in this population by exhibiting the graph
of data, where the x-axis represents the population size xt and the y-axis
represents the logarithm of per-capita growth rate ln

xt+1
xt .

It is evident that the per-capita growth rate is below one (ln
xt+1
xt < 0)

when the population size increases and reaches a threshold size (Allee equi-
librium, point A) (log(

xt+1
xt ) = 0). The per-capita growth rate keeps in-

creasing but a certain critical size (around 200 marmots) [2] the curve turns
downward, with a decreasing reproductive rate. The authors hypothesize
that the marmots have increased their range due to a lack of mates nearby.
Thus the very process of increasing their per-capita growth rates is hin-
dered because they cannot find mates, and when they go looking, are more
likely to be killed by predators or get lost in unfamiliar territory.

Definition 1. Model (1) is said to have a strong Allee effect if the fol-
lowing conditions hold true.

(i) f ′(x) > 0 for x ∈ (o, ε), for some ε > 0,
(ii) f(0) < 1,
(iii) There exists a unique k > 0 such that f(k) = 1 and f ′(k) < 0.

Note that from the above conditions one concludes that there exists an
equilibrium point A, 0 < A < k, such that f(A) = 1 and A is unstable.

Elaydi and Sacker [6] used the following rational function as the per-
capita growth rate

f(x) = ax+ r
x2 + cx+ d

to model the strong Allee effect and hence the model is given by

xt+1 =
ax2t + rxt
x2t + cxt + d

(10)

This model is a variation of the Beverton-Holt model with an Allee
effect caused by mate limitations as in (5).

Forcing the graph of f(x) to pass through the three points in Figure 2
we obtain

f(x) =
(A+ k + c)x+

RAk

1−R
x2 + cx+

RAk

1−R
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Using this f(x) one may conclude that for large x, xf(x) is asymptotic to
A+ k + c.

We now point out the differences between model (6) and the other mod-
els (2, 3, 4, 5). Now in models (2) and (4) of the Ricker-type large overstock-
ing leads to extinction, while in models (3) and (5) of the Beverton-Holt
type, with overstocking, the population goes tot the stable equilibrium k.
In Model (6), however, the parameter c controls the outcome of overcom-
pensation, which will call the shock recovery parameter. If c = −(A + k),
then large overcompensation would lead to the extinction of the population.
Moreover, if c > −k, then overstocking does not lead to extinction and the
population returns towards the interior stable equilibrium k.

In this proposal we will focus our attention in the Hassell model given
by

xt+1 = rxt
(1 + kxt)

b

where we have undercompensation if 0 < b < 1, exact compensation if b = 1
and overcompensation if b > 1. We will investigate the Hassell model with
the Allee effect caused by either predator saturation or caused by mate
limitation. Fowler and Ruxton studied the Hassell model with the Allee
effect but using an Allee function I(x) that was not biologically justified.

Model derivation for 2-species. We now extend single-species mod-
els with Allee effects to two-species/two-dimensional population models.
and a non-extinction region separated by an Allee curve (curves).

Model derivation for 2-species predator-prey. Nicholson and Bailey [18]
developed a general host-parasite model that is still the basis for most
recent studies. Let Ht be the density of the host (prey) at time t and Pt be
the density of the parasite (predator) at time t. Then the model is given
by

Ht+1 = rHtf(Ht, Pt), Pt+1 = eHt(1− f(Ht, Pt)), (11)

where f(Ht, Pt) is the fraction of hosts not parasitized, r is the number of
eggs laid by a host that survives through the larvae, pupae, and adult stages,
and e is the number of eggs laid by a parasitoid on a single host that survive
through larvae, pupae, and adult stages. Based on the assumption that
the host-parasite encounter is random and follows the Poisson distribution,
Beddington and Bailey purposed that f(Ht, Pt) = e−aPt , where a represents
the searching efficiency of the parasite. Then (10) becomes

Ht+1 = rHte
−aPt , Pt+1 = eHt(1− e−aPt). (12)

Unfortunately, this model is unrealistic since in the absence of the par-
asite the host grows exponentially. This is due to the fact that the model
is density dependent.
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In 1975, Beddington et al modified the latter model by adopting the
single species density-dependent Ricker model as follows

Ht+1 = Hte
r(1−Ht

k
)−aPt , Pt+1 = Ht(1− e−aPt), (13)

where k is the carrying capacity of the host. With the Allee effect caused
predator saturation (12) becomes

Ht+1 = Hte
r(1−Ht

k
)−aPt − m

1 + sHt
.Pt+1 = eHt(1− e−aPt) (14)

Alternatively, with the Allee effect caused by mate limitation, equation
(14) becomes

Ht+1 = Hte
r(1−Ht

k
)−aPt · sHt

1 + sHt
(15)

Pt+1 = eHt(1− e−aPt)

Of course, one may use alternatively any of the single-species models
instead of the Ricker model. S. Jang [7] used the Beverton-Holt model in
her study of the host-parasitoid model with the Allee effect.

Summary. In this project we will examine the Host-parasite models
with the Allee effect using the Ricker, the logistic, and Hassell models.

In both competition and predator-prey models we are going to investi-
gate the following items:

1. Local and global stability analyzed of the equilibrium and periodic
points;

2. Invariant manifolds: center, stable, and unstable;

3. Bifurcation: saddle-node, period-doubling, and Neimark-Sacker;

4. Parameter-space bifurcation diagrams that show the stability region
in the parameter space;

5. Biological conclusions.

Recently, new tools to determine the global dynamics of planar discrete
dynamical systems have been developed by Elaydi and his collaborates
[17]. These tools include the use of singularity theory developed in the last
century by Hassler Whitney [15]. Other important tools in the theory of
critical curves were introduced by Mira and his collaborates [16].
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