Ca²⁺ Microdomains in the Pancreatic β -Cell: a Three-Dimensional Modeling Approach

<u>Gerardo J. Félix Martínez</u>, J. Rafael Godínez Fernández Department of Electrical Engineering Universidad Autónoma Metropolitana, México. gjfelix2005@gmail.com, gfjr@xanum.uam.mx

Keywords: β -Cell, Glucose, Insulin, Calcium, Ca²⁺, Microdomains.

 β -cells are responsible for secreting insulin as a response to an increase in blood glucose levels. Being electrically excitable, β -cells exhibit electrical activity in response to a glucose stimulus driven by a well established mechanism involving glucose metabolism, ionic channels and calcium signaling [1]. The purpose of β -cell electrical activity is to allow the influx of Ca²⁺ through ionic channels located in the plasma membrane in order to generate a high Ca^{2+} microdomain, which is the key signal triggering insulin exocytosis [2]. It is known that Ca^{2+} channels and insulin granules co-localize, and that they are not evenly distributed over the cell [3]. Accounting for these morphological characteristics we have developed a three-dimensional model of a β -cell. By including a mathematical description of the ionic channels, our model reproduces the electrical activity observed experimentally. This allow us to simulate the spatiotemporal distribution of Ca^{2+} in the microdomain generated by the electrical activity pattern. Our modeling approach enable us to evaluate the effect of distinct distributions of Ca^{2+} channels over the cell membrane. Besides reproducing experimental observations, we also assess the impact of impaired functioning of ionic channels on Ca^{2+} microdomains, which could ultimately affect insulin secretion.

References

- [1] J.C. Henquin, The dual control of insulin secretion by glucose involves triggering and amplifying pathways in β -cells, Diabetes Research and Clinical Practice. **93** S27-S31, 2011.
- [2] G.A. Rutter, T. Tsuboi, M.A. Ravier, Ca²⁺ microdomains and the control of insulin secretion, Cell Calcium. 40 539-551, 2006.
- [3] K. Bokvist, L. Eliasson, C. Ammälä, E. Renström, P. Rorsman, Colocalization of L-type Ca²⁺ channels and insulin-containing secretory granules and its significance for the initiation of exocytosis in mouse pancreatic B-cells, The EMBO Journal, 14(1) 50–57, 1995.