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Patterns due to chemical instability is believed to be of essential im-
portance in many biophysical systems, ranging from developmental biology
[14], tumour metastases [3], controlled cell migrations (e.g. lung morphogen-
esis [15]), heterogeneous cell fate decision (nodal-lefty gene products [17],
patterning in Drosophilla wing [2]), formation of skin patterns (mammalian
coat markings or feather bud arrangements [16], Zebrafish mesodermal pig-
mentation [21, 11] to chemical reactions [1], vegetation stripes in landscape
[20] or spatial patterns in mussel beds [23].

Systematic description of self-organisation in nature started by Turing
[22] (mathematics) and also by Prigogine [18] (non-equilibrium thermody-
namics). Typically, diffusion-driven instability (or Turing instability, TI)
[22] is considered as the symmetry breaking mechanism. Turing showed
that small local spatial fluctuations in an otherwise well-mixed system of
autocatalytic and inhibitory diffusing species could become unstable due to
diffusion and that an amplification of these fluctuations could lead to pat-
tern development. Specifically, heterogeneous concentrations of chemicals
form a ’pre-pattern’. Subsequent differentiation of tissue/cell type is in re-
sponse to whether or not one of these morphogens exceeds some threshold
locally.

The proposed TI mechanism, however, has several well-known limita-
tions: sensitivity to noise (in initial conditions and to noise itself), Tur-
ing morphogens are hard to find (a possible Turing pair is Nodal/Lefty in
zebrafish mesodermal induction) and that diffusion coefficients are signifi-
cantly different as diffusion tends to smooth out local excess or the depletion
of species but on the other hand, it can allow species to grow locally if this
process occurs on different time-scales in the two species. However, as pu-
tative Turing pairs have similar molecular weights, this condition on the
ratio of diffusion coefficient is in contrast to the Stokes-Einstein equation
that relates diffusion constant to effective radius of a given molecule and to
properties of the environment.



Turing model is successful in reproducing spatial organisation through
a simple mechanism. Can we, however, infer its relevance to spatial organ-
isation in real systems based on this feature? Probably the most limiting
condition for TI is the need for significantly distinct diffusion constants.
This condition can be rather naturally overcome by an approach set up
by Lengyel-Epstein when activator binds to a substrate [12, 13]. Does
this improve the relevance and plausibility of Turing mechanism to spatial
organization in real systems? We shall argue that quite the contrary is
true - it points to the problem of reductionism. These arguments led us
to questioning the concept of TI leading to pattern formation itself in not
well-controlled (e.g. biological) systems [8].

Is there some other framework able to describe spatial organisation and
what about its relevance to real systems? We shall address both these
questions by introducing the concept of non-equilibrium thermodynamics
[5–7, 19] and apply it to Belousov-Zhabotinskii reactions offering a pos-
sible explanation [9, 10] of the recently observed phenomena of ”revival”
oscillations in Belousov-Zhabotinskii gels by mechanical stimulation [4].
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