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The three main avenues of research in ecology focus on animal behav-
ior, population dynamics, and evolution of traits. Historically, differences
between these three research programs are the underlying time scales: fast
changes in animal behavior, intermediate fast changes in animal numbers,
and slow changes in traits. Following these time scales various mathemat-
ical methodologies were applied to develop corresponding mathematical
models. While changes in population abundance are often described by
differential/difference equations, models of animal behavior or evolution
often rely on methods of optimization and evolutionary game theory. It is
clear that an “ideal” mathematical model should integrate all these three
time scales, but such models would be difficult if not impossible to an-
alyze. Recently some new approaches integrating processes operating on
different time scales have been developed. In my talk I will discuss the so
called “population games” showing that the new insights they lead to are
not only of mathematical interest, but are also important tools for better
understanding mechanisms regulating biodiversity.

I will start with the classical Lotka–Volterra predator-prey model that
describes changes in predator and prey numbers. This model assumes a
homogeneous environment where predators and prey are well mixed. I will
focus on an extension of this model to a heterogeneous environment con-
sisting of two patches [11]. The resources in both patches (denoted as R1

and R2) do not disperse, but consumers (C) do. The topology of such
a food web has been called the “apparent competition module” [9], be-
cause although the two resources do not directly compete, the competition
is “apparent” through the shared predator. If one resource increases in
abundance, predator population increases too and this exerts a negative
effect on the other population and vice versa. Provided consumers form a
monomorphic population with individual preference for the ith resource ui
(u1 + u2 = 1), a direct extension of the Lotka–Volterra model is described



by the following set of differential equations

dR1

dt
= R1(r1 − u1λ1C)

dR2

dt
= R2(r2 − u2λ2C) (1)

dC

dt
= C(e1u1λ1R1 + e2u2λ2R2 −m)

where ri is the per capita intrinsic prey population growth rate, λi is the
consumer search rate for prey type i, ei is the efficiency with which con-
sumed resources are transformed to new consumers, and m is the consumer
mortality rate. The classical models of population dynamics assume that
interaction strength in food webs is fixed, which means that consumer pref-
erences ui (i = 1, 2) are fixed. For model (1) this leads to prediction that
the resource with the lower ratio ri/(uiλi) will be outcompeted from the
food web. However, the assumption on the interaction strength given by
fixed consumer preferences is not supported by observations that come from
behavioral ecology. It has been observed many times that if the preferred
resource is rare, generalist consumers are adaptive in the sense that they
shift their preference to an alternative, more abundant, resource.

Several behavioral models under the general term “optimal foraging”
were developed to describe animal feeding preferences [4, 5, 19]. These
models assume that those individuals that maximize energy intake rate
achieve higher fitness and their phenotype is promoted during evolution.
Thus, food web models should consider not only changes in population
numbers, but also changes in interaction strength. In fact, this leads to a
complex feedback where changes in population numbers change consumer
preferences which, in turn, influence population dynamics. For example, in
the case of model (1) a proxy for consumer fitness can be defined as the
per capita population growth rate, i.e.,

W (u) = e1u1λ1R1 + e2u2λ2R2,

where u = (u1, u2), u1 +u2 = 1, ui ≥ 0, i = 1, 2. If Wi = eiλiRi is the i−th
patch payoff, consumer fitness W is the mean payoff an individual obtains
when it spends a proportion ui of its lifetime in patch i. To describe changes
in consumer preferences we can use, e. g., the replicator dynamics of the
game theory

dui
dt

= ui(Wi −W (u)), i = 1, 2. (2)



The replicator equation assumes that proportion of time spent in patch
1 increases, provided payoff in patch 1 is larger than payoff in patch 2
(W1 > W2), and decreases otherwise. There are other game dynamics (e.g.,
the best response dynamics) that can be more relevant than the replica-
tor dynamics in some contexts [15]. This example shows that integration
of population dynamics with behavioral/evolutionary dynamics increases
complexity of the model because it increases the number of differential
equations. This leads to difficulties when analyzing the resulting model.
However, by separating the population and behavioral time scale, model
(1) and (2) can be substantially simplified. Here I will assume that changes
in consumer preferences occur on a much faster time scale than changes in
demography. In fact, I will assume that consumers’ diet choice instanta-
neously track current population densities. This assumption allows me to
write consumer preferences P as a function of population densities, i.e.,

P (R1, R2) =


1 W1 > W2

0 W1 < W2

[0, 1] W1 = W2.

(3)

Then behavioral dynamics (2) are replaced by algebraic inclusion

u1 ∈ P (R1, R2).

Substituting this feedback in model (1) leads to a differential inclusion. This
model predicts indefinite coexistence of all three species [11, 3]. A similar
prediction holds also for more complex di- and tri-trophic food webs with
many species [14]. From the ecological point of view, a new result here is
that adaptive animal foraging promotes species biodiversity.

In many cases finding the “optimal” animal strategy at current popula-
tion abundance may not be a straightforward optimization problem like the
one mentioned above. In particular, this is the case where animal fitness is
frequency dependent, i.e., when it depends on the animal strategy. In such
cases it has been argued since the pioneering work of J. Maynard Smith
and G. R. Price [18] that Darwinian evolution corresponds to evolutionar-
ily stable strategies. The evolutionarily stable strategy is a strategy that
resists invasions of individuals that use a different strategy. For example,
let us consider a population that disperses between two habitat patches,
each with a frequency dependent payoff Wi(ui) where u = (u1, u2) is the
distribution of the population between the two patches. If all individuals
have the same preferences for patches measured by the proportion of their
lifetime spent in either patch the population distribution coincides with in-
dividual strategies. Let us consider a mutant that differs from the residents



in its patch use described by ũ = (ũ1, ũ2). Fitness of such a mutant in the
resident population with distribution u = (u1, u2) is defined as the mean
payoff, i.e.,

W (ũ, u) = ũ1W1(u1) + ũ2W2(u2).

Provided patch payoffs Wi are negatively density dependent, i.e., patch
payoffs are decreasing functions of population numbers, it was proved [6]
that the interior strategy/distribution satisfying W1(u1) = W2(u2) is an
evolutionarily stable strategy. Such a population distribution is also called
the Ideal Free Distribution (IFD) in ecology [8]. The single species dis-
tribution was extended to two species that compete for resources in both
patches [16]. Here the problem is how to define a two-species IFD/ESS, be-
cause the original definition is for a single species only. Using a two-species
extension of the ESS [15] coexistence of two competing species in a two-
patch environment was studied in [1, 7]. In particular, it was shown there
that conditions for evolutionarily stability of spatial distribution of the two
populations are different from the conditions on population stability for the
classic Lotka–Volterra competition model in two patches. In other words, it
is possible that while population dynamics of the two populations converge
to a stable equilibrium at each patch when neither species disperses, direc-
tional dispersal can destabilize these equilibria and lead to fluctuations in
population densities.

These theoretical concepts have also been applied to real ecological
problems, e.g., [2, 12, 13, 10, 17]. For example [12] shows that the lac
operon is evolutionarily optimized. It is well know that in mixed substrates
with glucose and an alternative carbon source (e.g., lactose) bacteria utilize
glucose first and then switch to lactose. At the molecular level this switch
is known as the lac operon. The question here is whether bacteria switch
between the two resources at the time that maximizes their fitness? To
answer this question a model of bacterial growth on two substrates that
assumes adaptive bacterial switching that maximizes bacterial per capita
population growth rate was constructed [12]. Using data from the litera-
ture, this model allows us to predict the time and the sugar concentrations
at which bacteria should switch. These predicted times of switching fit
very well with observed times for different substrates and different initial
sugar concentrations. This strongly supports the idea that the molecular
mechanism regulating resource switching is evolutionarily optimized.

It should be mentioned that the above modeling approach assumes that
changes in animal behavior operate on a short time scale when compared
to population dynamics. There is an alternative approach, called adaptive
dynamics, that assumes that trait changes operate on much slower time



scale when compared to population demography. This approach is relevant
especially in cases where traits undergo slow evolutionary changes.
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[7] R. Cressman and V. Křivan. Two-patch population models with adap-
tive dispersal: the effects of varying dispersal speeds. J. Math. Biol.,
67:329–358, 2013.

[8] D. S. Fretwell and H. L. Lucas. On territorial behavior and other
factors influencing habitat distribution in birds. Acta Biotheoretica,
19:16–32, 1969.

[9] R. D. Holt. Predation, apparent competition, and the structure of prey
communities. Theoretical Population Biology, 12:197–229, 1977.



[10] V. Krivan and A. Pryiadarshi. L-shaped prey isocline in the gause
predator-prey experiments with a prey refuge. Journal of Teoretical
Biology, 370:21–26, 2015.
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