Molecular Modelling of the Complex hIFNI- γ -hIFN γ R-Heparin-Derived Oligosaccharides

Elena Lilkova¹, Peicho Petkov¹, Nevena Ilieva², Leandar Litov¹

¹ University of Sofia "St. Kliment Ohridski", Faculty of Physics

² Institute of Information and Communication Technologies - BAS, Sofia elilkova@phys.uni-sofia.bg

Keywords: Interferon gamma, Heparin-derived oligosaccharides, Force field parameters development, Molecular dynamics simulations

Human interferon gamma (hIFN- γ) is an important antiviral and immunomodulating signaling molecule, which is also related to several autoimmune deceases. The cytokine expresses its activity through a specific extracellular receptor, the Interferon gamma receptor (hIFN γ R). Understanding the process of hIFN- γ – hIFN γ R complex formation is crucial for finding a mechanism for suppressing IFN- γ biological activity.

We performed multiple molecular dynamics simulations to study the formation of the complex between interferon gamma and its receptors. It was found that the highly positively charged flexible C-terminal tails of the cytokine interact with negatively charged domains in the receptor molecules. This interaction prevents the proper orientation of the hIFN- γ molecule relative to the receptors, so that the binding sites remain separated in space. It became evident that another participant is necessary for the cytokine-receptor binding to occur.

It is known that interferon gamma binds to heparin-derived oligosaccharides. These are linear highly negatively charged carbohydrates, occurring as an integral component of the basement membrane of all mammalian cells. In order to simulate the interaction between hIFN- γ , hIFN γ R and heparin-derived oligosaccharides with various degree of polimerisation, we first developed force field parameters for the monosaccharide N-sulfated glucosamine. The CHARMM compatible parameters were developed using the Force Field Toolkit of the molecular visualization and manipulation program VMD.

Acknowledgements: Financial support is acknowledged from Grant BG051 PO001-3.3.06-0057 of the Operational Programme Human Resources Development co-financed by the European Social Fund of the EU.