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Abstract

We consider a batch mode bioreactor model proposed by
Alt and Markov (2012). The model is developed using the
fact that the bacterial growth undergoes four phases: lag, log,
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scribe continuously stirred bioreactor dynamics. For this model
we compute the equilibrium points and study their asymp-
totic stability. Some basic properties of the solutions like uni-
form boundedness and uniform persistence are also established.
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numerically. Thereby, solutions in the form of travelling waves
are found.
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1 Introduction

A new approach to the mathematical modelling of microbial growth
is proposed in [5]. This approach is based on the fact that bacterial
growth in batch culture can be modelled using four different phases:

(i) lag phase: bacteria adapt themselves to growth conditions. The
bacteria are maturing and not yet able to divide.

(ii) log phase is the period characterized by cell doubling. If growth
is not limited, doubling will continue at a constant growth rate thus
the number of cells and the rate of population increase doubles with
each consecutive time period.

(iii) stationary phase: the growth rate slows down as a result of
nutrient depletion and accumulation of toxic products. This phase is
reached as the bacteria begin to exhaust the available resources. In
this phase the bacterial growth is equal to the rate of bacterial death.

(iv) death phase: bacteria run out of nutrient substrate and die.
More details about bacterial growth phases and their modeling can

be found in [1], [5] and the references therein.
The batch mode bioreactor model with microbial growth phases

proposed in [1] is described by the following nonlinear ordinary differ-
ential equations

ds

dt
= −k1u1s− (α + β)u2s

du1

dt
= −k1u1s+ k2u2 + αu2s− γ1u1 (1)

du2

dt
= k1u1s− k2u2 + βu2s− γ2u2,

where
s is the substrate concentration;
u1 is the concentration of bacteria in lag and stationary phase;
u2 is the concentration of (vital, active) bacteria in log phase;
k1su1 represents the consumption of s by bacteria u1 and the tran-

sition of bacteria u1 into bacteria u2;
αsu2 models a part of bacteria u2 passing into bacteria u1;
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βsu2 represents the consumption of s by bacteria u2 and the in-
crease of the biomass u2 due to nutrition and reproduction;

k2u2 describes the random transition of bacteria from type u2 into
type u1;

γiui describes the decay of bacteria ui, i = 1, 2.
It is assumed that all parameters in the model are positive.

2 The continuously stirred bioreactor model

We modify the model (1) by adding terms describing the inlet of sub-
strate in the bioreactor:

ds

dt
= −k1u1s− (α + β)u2s+ dr(s

0 − s)

du1

dt
= −k1u1s+ k2u2 + αu2s− dru1 (2)

du2

dt
= k1u1s− k2u2 + βu2s− dru2.

Here dr denotes the dilution rate, dr > 0, and s0 is the input substrate
concentration in the bioreactor. The parameters γ1 and γ2 from (1)
are assumed now to be equal, γ1 = γ2, interpreted as wash-out of
bacteria and denoted in (2) by dr. After possible rescaling of the first
equation by means of s := s/s0, we may assume that s0 = 1 and
consider further the model in the following form

ds

dt
= −k1u1s− (α + β)u2s+ dr(1− s)

du1

dt
= −k1u1s+ k2u2 + αu2s− dru1 (3)

du2

dt
= k1u1s− k2u2 + βu2s− dru2.

For biological evidence we also assume that the following inequality
is fulfilled:

max{k1, k2} < β. (4)
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2.1 Basic properties of the solutions

We consider the model (3) under the assumption (4).

Proposition 2.1. The positive octant

Ω =
{

(s, u1, u2) ∈ R3 : s > 0, u1 > 0, u2 > 0
}

is positively invariant set for (3).

Proof. The boundary of Ω satisfies the following properties.

If s(τ) = 0 for some τ ≥ 0 then
ds

dτ
= dr > 0.

If u1(τ) = 0 for some τ ≥ 0 then
du1

dτ
= u2(τ)(k2 + αs(τ)) ≥ 0

with
du1

dτ
= 0 if and only if u2(τ) = 0.

If u2(τ) = 0 for some τ ≥ 0 then
du2

dτ
= k1s(τ)u1(τ) with

du2

dτ
=

0 if and only if u1(τ) = 0.
Thus the vector field points inside Ω along the whole boundary of

Ω without the line {u1 = u2 = 0, s > 0}, which itself is invariant for
the system (3).

The right-hand side of (3) is continuously differentiable, thus local
existence and uniqueness of solutions follow immediately.

Proposition 2.2. All nonnegative solutions of the model (3) are uni-
formly bounded and thus exist for all time t > 0.

Proof. Since s(t) > 0, u1(t) > 0, u2(t) > 0 holds true in Ω, any

solution (s(t), u1(t), u2(t)) satisfies the inequality
ds

dt
≤ dr(1 − s(t))

and therefore lim supt→∞ s(t) ≤ 1. Further,

ds

dt
+
du1

dt
+
du2

dt
= −k1su1 + dr(1− s− u1− u2) ≤ dr(1− s− u1− u2),

which implies lim supt→∞(s(t) + u1(t) + u2(t)) ≤ 1. Since all solutions
are nonnegative in Ω, it follows that any positive solution is bounded,
exists for for all t ∈ [0,+∞) and enters the bounded set {(s, u1, u2) ≥
0, s + u1 + u2 ≤ 1}. This means that the system (3) is dissipative in
the closure Ω.
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2.2 Equilibrium points and their local stability

The equilibrium points of the model (3) are solutions of the nonlinear
system

−k1u1s− (α + β)u2s+ dr(1− s) = 0 (5)

−k1u1s+ k2u2 + αu2s− dru1 = 0 (6)

k1u1s− k2u2 + βu2s− dru2 = 0. (7)

Obviously, E0 = (1, 0, 0) is always an equilibrium point of the
model; it is called wash-out equilibrium.

By adding equation (5) to (7), equation (6) to (7) we obtain the
system

−k1su1 − (α + β)u2s+ dr(1− s) = 0 (8)

−k2u2 − αsu2 + dr(1− s− u2) = 0 (9)

(α + β)su2 − dr(u1 + u2) = 0. (10)

We express u1 from (10) as

u1 = u2

(
α + β

dr
s− 1

)
; (11)

equation (9) delivers

u2 =
dr(1− s)

αs+ k2 + dr
. (12)

Then substituting u1 from (11) and u2 from (12) into (8) we obtain
the following quadratic equation with respect to s:

k1

dr
(α + β)s2 − (k1 − β)s− (k2 + dr) = 0. (13)

The discriminant ∆s of the latter is given by

∆s = (k1 − β)2 + 4
k1

dr
(α + β)(k2 + dr) > 0,
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thus the quadratic equation (13) possesses two real roots, one positive
and one negative. We denote the positive root by s∗, i. e.

s∗ =
dr(k1 − β +

√
∆s)

2k1(α + β)
. (14)

According to Proposition 2.2 the steady state component s∗ should
satisfy s∗ < 1. The latter inequality is equivalent with the quadratic
inequality (with respect to dr)

d2
r + (k1 + k2 − β)dr − k1(α + β) < 0.

Its discriminant is ∆d = (k1 + k2 − β)2 + 4k1(α+ β) > 0; hence there
are two real roots with respect to dr, one positive and one negative;
denote by d̄r the positive root, i. e.

d̄r =
1

2
(β − k1 − k2 +

√
∆d).

Then for 0 < dr < d̄r we have s∗ < 1.
From (12) we find

u∗2 =
dr(1− s∗)

αs∗ + k2 + dr
.

Clearly, u∗2 > 0 if dr < d̄r holds true. Further, by replacing u2 = u∗2
and s = s∗ in (11) we find

u∗1 = u∗2

(
α + β

dr
s∗ − 1

)
.

Obviously, u∗1 > 0 if and only if s∗ >
dr

α + β
; it can be easily seen from

(14) that the latter inequality is always satisfied.
We summarize the above calculations in the following proposition.

Proposition 2.3. If dr < d̄r, then the model (3) possesses two equilib-
rium points: the wash-out steady state E0 = (1, 0, 0) and the positive
(internal) equilibrium E∗ = (s∗, u∗1, u

∗
2). If dr > d̄r then the wash-out

steady state E0 is the unique equilibrium point of the model. �
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Remark 2.1. When dr = d̄r, then s∗ = 1 holds true. In this case E0

and E∗ coincide and a bifurcation (with respect to the parameter dr)
of the steady states may occur.

In what follows we shall investigate the local asymptotic stability
of the equilibrium points.

Proposition 2.4. If dr < d̄r, then E∗ is locally asymptotically stable
equilibrium and E0 is a saddle point. If dr > d̄r then the unique
equilibrium point E0 is locally asymptotically stable.

Proof. The Jacobian matrix of the model (3) is

J(s, u1, u2) =

 −k1u1 − (α + β)u2 − dr −k1s −(α + β)s
−k1u1 + αu2 −k1s− dr k2 + αs
k1u1 + βu2 k1s −k2 + βs− dr


The eigenvalues of J(E0) are the roots of the characteristic polynomial
|J(E0) − λI| = 0 (I denotes the (3 × 3)–unit matrix), which is given
by

(dr + λ)[λ2 + (2dr + k1 + k2 − β)λ

+ (d2
r + (k1 + k2 − β)dr − k1(α + β))] = 0.

Obviously, λ3 = −dr < 0 is one of the eigenvalues of J(E0). The
other two eigenvalues λ1, λ2 are solutions of the quadratic equation
(the term in the square brackets above) and satisfy the relations

λ1λ2 = d2
r + (k1 + k2 − β)dr − k1(α + β),

λ1 + λ2 = −2dr + β − k1 − k2.

When dr < d̄r then λ1λ2 < 0 and hence E0 is a saddle equilibrium
point. If dr > d̄r then λ1λ2 > 0, i. e. both eigenvalues are of equal
signs; moreover, the inequality dr > d̄r implies 2dr > β − k1 − k2 thus
λ1 +λ2 < 0 holds true. In this case E0 is locally asymptotically stable
equilibrium point.

To prove the local stability of E∗ we shall use the Routh-Hurwitz
criterion. The eigenvalues of J(E∗) = (Jij)

3
i,j=1 are the roots of the

cubic polynomial

g(λ) = −λ3 + aλ2 − bλ+ c,
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where the coefficients a, b and c are presented by

a = trJ(E∗) = J11 + J22 + J33

b = det

(
J11 J12

J21 J22

)
+ det

(
J22 J23

J32 J33

)
+ det

(
J11 J13

J31 J33

)
c = detJ(E∗).

According to the Routh-Hurwitz criterion [7], the necessary and suffi-
cient condition for g(λ) to possess three roots with negative real parts
is a < 0, c < 0 and ab < c.

Using the fact that s∗ is the root of (13) it is straightforward to
see that

a = −
(

2dr + k1u
∗
1 + (α + β)u∗2 +

k1

dr
(α + β)s∗2

)
< 0. (15)

Denote for simplicity

G1 = det

(
J11 J12

J21 J22

)
, G2 = det

(
J22 J23

J32 J33

)
, G3 = det

(
J11 J13

J31 J33

)
and further

G4 = det

(
J21 J23

J31 J33

)
, G5 = det

(
J21 J22

J31 J32

)
.

It is easy to see that

G1 = k1dru
∗
1 + dr(α + β)u∗2 + k1drs

∗ + k1(2α + β)s∗u∗2 + d2
r,

G2 = −k1(α + β)s∗2 + dr(k1 − β)s∗ + dr(k2 + dr) = 0,

G3 = (k2 + dr)(k1u
∗
1 + (α + β)u∗2)− βdrs∗ + αk1s

∗u∗1 + dr(dr + k2).

Then we have

b = G1 +G3

= (k2 + 2dr)(k1u
∗
1 + (α + β)u∗2) + k1(α + β)s∗2

+k1(2α + β)s∗u∗2 + αk1s
∗u∗1 + d2

r.
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Further,

G4 = −k1u
∗
1 ((α + β)s∗ − dr)− u∗2 (αdr + k2(α + β)) < 0,

G5 = k1(α + β)s∗u∗2 + dr(k1u
∗
1 + βu∗2) > 0.

Then
c = k1s

∗ G4 − (α + β)G5 < 0.

Finally, straightforward (but rather lengthy) calculations deliver

ab− c = −
{
k1

dr
(α + β)2s∗4 + (k2 + 2dr)(k1u

∗
1 + (α + β)u∗2)2

+
k2

1

dr
α(α + β)s∗3u∗1 +

k2
1

dr
(α + β)(2α + β)s∗3u∗2

+ αk1(k1u
∗
1 + (α + β)u∗2)s∗u∗1 + k1(2α + β)(k1u

∗
1 + (α + β)u∗2)s∗u∗2

+ 3k1dr(α + β)s∗2 + k1(α + β)

(
k2

dr
(α + β) + 3α + k1

)
s∗2u∗2

+ ((α + β)(7k1dr + k1k2 + βdr) + k1dr(β − k1)) s∗u∗2

+
k2

1

dr
(k2 + 2dr)(α + β)u∗1 + dr(5dr + 2k2)(α + β − k1)u∗2 + 2d3

r

}
.

Taking into account (4) it follows that ab − c < 0 is valid. Therefore
if E∗ exists, it is locally asymptotically stable.

2.3 Global properties of the solutions

We shall show first that there exists a uniform lower bound of s(t).

Proposition 2.5. The following inequality holds true:

lim inft→∞s(t) ≥
dr

k1 + α + β + dr
.

Proof. Using the fact that ui(t) ≤ 1, i = 1, 2, we obtain from the first
equation of (3)

ds

dt
= −(k1u1 + (α + β)u2 + dr)s+ dr

≥ −(k1 + α + β + dr)s+ dr,
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which means that lim inft→∞s(t) ≥
dr

k1 + α + β + dr
.

Remark 2.2. Denote Cs =
dr

k1 + α + β + dr
. Obviously, 0 < Cs < 1

is valid. Moreover, any constant C̃s satisfying 0 < C̃s < Cs can be
used as a lower bound of s(t).

Denote u =
u1

u2

; then from the second and third equation of (3) we

obtain
du

dt
= −k1su

2 − ((k1 + β)s− k2)u+ αs+ k2. (16)

Proposition 2.6. There exist positive constants C l
u and Cb

u such that
C l
u ≤ lim inft→∞u(t) and lim supt→∞u(t) ≤ Cb

u are satisfied.

Proof. Since s(t) ≤ 1 for all t > 0 holds true, we have from (16) that

du

dt
≥ −k1u

2 − (k1 + β − k2)u+ k2.

We can compare the solution of the above differential inequality with
the solution of the Riccati equation

dz

dt
= −k1z

2 − (k1 + β − k2)z + k2. (17)

Consider the quadratic equation −k1z
2 − (k1 + β − k2)z + k2 = 0 and

denote by z its positive root:

z =
1

2k1

(
−k1 − β + k2 +

√
∆1

)
, ∆1 = (k1 + β − k2)2 + 4k1k2 > 0.

Then z represents a particular solution of (17). The variable change

ζ =
1

z − z
transforms the Riccati equation (17) into a linear one

dζ

dt
= (k1 + β − k2 + 2k1z)ζ + k1,
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which solution can be easily computed to be

ζ(t) =
k1√
∆1

(−1 + e
√

∆1 t).

Then

z(t) = z +
1

ζ(t)
= z +

√
∆1e

−
√

∆1 t

k1(1− e−
√

∆1 t)
≥ z.

We obtain that u(t) satisfies the inequality

C l
u ≤ lim inft→∞u(t) with C l

u = z.

The uniform upper boundedness of u(t) can be easily obtained
using a similar approach. By means of Propositions 2.2 and 2.5 we
have 0 < Cs ≤ s(t) ≤ 1 and thus

du

dt
≤ −k1Csu

2 + (k2 − (k1 + β)Cs)u+ α + k2,

which solutions can be again compared with the solutions of the Ric-
cati equation

dz

dt
= −k1Csz

2 + (k2 − (k1 + β)Cs)z + α + k2. (18)

Denote by z̄ =
−(k1 + β)Cs + k2 +

√
∆2

2k1Cs
> 0 with ∆2 = (k2 − (k1 +

β)Cs)
2 + 4k1Cs(α + k2) a particular solution of (18). Then it can be

easily seen as above that the following inequality is satisfied

lim supt→∞u(t) ≤ Cb
u with Cb

u = z̄.

It remains to be shown that C l
u ≤ Cb

u is valid. Using the particular
expressions of the constants C l

u and Cb
u, we have to show that

C2
s (k2 − (k1 + β))2 ≤ (k2 − Cs(k1 + β))2 (19)

is fulfilled. If k2 ≥ k1 + β ≥ Cs(k1 + β) or 0 < −(k2 − (k1 + β)) ≤
k2 − Cs(k1 + β) then (19) is obviously satisfied. In the case 0 <
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k2−Cs(k1 +β) ≤ −(k2− (k1 +β)) we can always choose a sufficiently

small positive constant C̃s < Cs (see Remark 2.2), so that 0 < −(k2−
(k1 + β)) < k2 − C̃s(k1 + β) holds true. This proves the proposition.

Theorem 2.1. If dr > d̄r then the wash-out equilibrium point E0 =
(1, 0, 0) is globally asymptotically stable for the model (3).

Proof. First we prove that limt→∞ u2(t) exists and is equal to zero. If
u2(t) does not tend to a limit then 0 < lim inft→∞u2(t) < lim supt→∞u2(t) =
ū2. Using the Fluctuation Lemma [4] there exists a sequence tm →
+∞ such that u̇2(tm) = 0 for allm and limm→∞ u2(tm) = lim supt→∞u2(t) =
ū2. Proposition 2.6 implies limm→∞ u1(tm) = lim supt→∞u1(t) = ū1 >

0; from equation (16) we obtain that limm→∞ u(tm) = ū =
ū1

ū2

> 0.

Applying Barbălat’s Lemma [3] we obtain

0 = lim
m→∞

u̇2(tm) = lim
m→∞

[(k1u1(tm) + βu1(tm))s(tm)− (k2 + dr)s(tm)],

and thus

lim
m→∞

s(tm) = s̄ =
k2 + dr
k1ū+ β

.

According to Proposition 2.2 we have s̄ ≤ 1; the last inequality is
equivalent with

dr ≤ k1ū+ β − k2.

Proposition 2.6 implies the existence of a sufficiently small constant
C̃s such that

dr ≤ k1
−(k1 + β)C̃s + k2 +

√
∆2

2k1C̃s
+ β − k2

=
1

2C̃s

(
βC̃s − k1C̃s + k2(1− 2C̃s) +

√
∆2

)
=

1

2

(
β − k1 + k2

(
1

C̃s
− 2

)
+

√
1

C̃2
s

(k2 − k1 − β)2 + 4
k1

C̃s
(α + k2)

)
≤ 1

2
(β − k1 − k2 +

√
∆d = d̄r.
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This is a contradiction with the assumption that dr > d̄r. Therefore,
there exists limt→∞ u1(t) = limt→∞ u2(t) = 0. Using the theory of the
asymptotically autonomous dynamical systems [6], we can consider
the model (3) on the invariant set u1 = u2 = 0; on this set the system
(3) takes the form ṡ = dr(1− s), and hence s(t) tends to 1 as t→∞.
Therefore, E0 = (1, 0, 0) is globally asymptotically stable equilibrium
of the model.

Corollary 2.1. If dr < d̄r holds true, then the system (3) is uniformly
persistent.

Proof. It follows from Proposition 2.6 that either u1(t) and u2(t) tend
to zero as t → +∞ or both are persistent, i. e. there exist positive
constants ci, such that lim inft→+∞ui(t) ≥ ci, i = 1, 2 (see [2]). Sup-
pose that u2(t)→ 0 as t tends to ∞; then u1(t) will also tend to 0 as
t→∞. As in the proof of Theorem 2.1 we obtain that s(t) must tend
to 1; this will mean that E0 is asymptotically stable for (3), but it is
not. The contradiction proves the corollary.

3 Reaction diffusion system. Travelling

wave solution

The model (3) describes bacterial growth in a continuously stirred
bioreactor, when the culture medium is perfectly homogeneous. Such
a hypothesis is not valid for a tubular bioreactor. Consider the biore-
actor as a long and narrow tube; let the input pump, feeding the tank
with substrate, be at the narrow end of the tube. Under these assump-
tions, the environment cannot remain homogeneous anymore, and the
dynamics of bacterial growth depend on spatiotemporal conditions.

We introduce diffusion terms in equations (3) to describe the spa-
tial dispersal of the bacteria. As a first approximation we consider the
one dimensional case with x being the spatial variable. We obtain the
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reaction diffusion system

∂s

∂t
= D

∂2s

∂x2
− k1u1s− (α + β)u2s+ dr(1− s)

∂u1

∂t
= D

∂2u1

∂x2
− k1u1s+ k2u2 + αu2s− dru1

∂u2

∂t
= D

∂2u2

∂x2
+ k1u1s− k2u2 + βu2s− dru2,

(20)

where D denotes the diffusion coefficient.
We look for a travelling wave solution of (20), namely:

s = s̄(ξ)

u1 = ū1(ξ)

u2 = ū2(ξ)

, (21)

where
ξ = x+ qt, q = const is the speed of the wave.

Upon substituting (21) into (20) and omitting the bars for notational
simplicity, we obtain the following system of ordinary differential equa-
tions of second order

q
ds

dξ
= D

d2s

dξ2
− k1u1s− (α + β)u2s+ dr(1− s)

q
du1

dξ
= D

d2u1

dξ2
− k1u1s+ k2u2 + αu2s− dru1

q
du2

dξ
= D

d2u2

dξ2
+ k1u1s− k2u2 + βu2s− dru2.

(22)

Let l, w1 and w2 denote respectively ds/dξ, du1/dξ and du2/dξ. Then

14



we can rewrite (22) as a first-order system

ds

dξ
= l

dl

dξ
=

1

D
[k1u1s+ (α + β)u2s− dr(1− s) + ql]

du1

dξ
= w1

dw1

dξ
=

1

D
[k1u1s− k2u2 − αu2s+ dru1 + qw1]

du2

dξ
= w2

dw2

dξ
=

1

D
[−k1u1s+ k2u2 − βu2s+ dru2 + qw2].

(23)

Proposition 3.1. The equilibrium point Ê0 = (1, 0, 0, 0, 0, 0) is a lo-
cally asymptotically unstable equilibrium for the system (23).

Proof. The Jacobian matrix of (23) is

J = J(s, l, u1, w1, u2, w2)

=



0 1 0 0 0 0
dr+u2(α+β)+u1k1

D
q
D

sk1
D

0 s(α+β)
D

0
0 0 0 1 0 0

−u2α+u1k1
D

0 dr+sk1
D

q
D

−sα−k2
D

0
0 0 0 0 0 1

−u2β−u1k1
D

0 − sk1
D

0 dr−sβ+k2
D

q
D


One of the eigenvalues of J , evaluated at Ê0 = (1, 0, 0, 0, 0, 0) is

λ̃1 =
q +

√
4drD + q2

2D

λ̃1 is obviously positive when q > 0 holds true; otherwise we have

λ̃1 =
q +

√
4drD + q2

2D
>
−|q|+

√
q2

2D
= 0.

Therefore Ê0 is an unstable equilibrium.

15



Proposition 3.2. If dr < d̄r, then Ê∗ = (s∗, 0, u∗1, 0, u
∗
2, 0) is an equi-

librium point for (23), which is locally asymptotically unstable.

Proof. It is straightforward to see that Ê∗ is an equilibrium point of
(23). Further, the characteristic equation of the J(s, l, u1, w1, u2, w2),

evaluated in Ê∗, i. e. |J(Ê∗)− λ̂I| = 0, can be presented in the form

− λ3 + aλ2 − bλ+ c = 0, (24)

where λ = λ̂(q− λ̂), and the coefficients a, b and c are computed as in
Proposition 2.4. We know from Proposition 2.4, that (24) possesses
three roots (with respect to λ) with negative real parts. Let λ1 be a
real root of (24); then λ1 must be negative. In this case λ̂ satisfies the
equation

λ̂2 − qλ̂+ λ1 = 0,

whose roots λ̂1 and λ̂2 are real and of opposite signs due to λ̂1λ̂2 =
λ1 < 0. Hence, Ê∗ is a saddle equilibrium point for (23).

Therefore, system (23) possesses two saddle equilibrium points Ê∗

and Ê0. Our goal is to find a heteroclinic orbit between these two
equilibrium points, which will correspond to a travelling wave solution
of (22). Such an orbit (if exists) should satisfy the boundary conditions

s(−∞) = 1,

l(−∞) = u1(−∞) = w1(−∞) = u2(−∞) = w2(−∞) = 0;

s(+∞) = s∗, u1(+∞) = u∗1, u2(+∞) = u∗2,

l(+∞) = w1(+∞) = w2(+∞) = 0.

A numerical example in the next section illustrates the existence
of such a heteroclinic orbit and thus the existence of a travelling wave
solution.

Remark 3.1 The speed q of the wave can be obtained approx-
imately using the following heuristic arguments. Let us consider in
(20) the wave front at its leading edge, i. e. in the area where u1 ≈ 0,
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u2 ≈ 0, s = 1. After linearization of the third equation in (20) we
obtain

∂u2

∂t
= D

∂2u2(x, t)

∂x2
− k2u2 + βu2 − dru2 (25)

Equation (25) coincides with the Kolmogorov-Petrovskii-Piskunov-
Fisher equation [8], therefore

q ≈ 2
√
D(β − k2 − dr).

The travelling wave solution exists if and only if β − k2 − dr > 0 or
equivalently 0 < dr < β − k2 (see (4)); it can also be easily checked
that β − k2 < d̄r holds true.

4 Numerical simulations

We consider the following values for the model constants taken from
[1]:

k1 = 0.05, k2 = 0.85, α = 1.35, β = 1.5.

Within these values we obtain d̄r = 0.7822. Let us choose dr = 0.5.
Then the equilibrium

E∗ = (0.8039850335, 0.1441799143, 0.04024320293).

is locally asymptotically stable, E0 is a saddle point for the model.
Figure 1 demonstrates the asymptotic stability of E∗, visualizing

three solutions of the model (3) with three different initial conditions.
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0.15
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0.30
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0.40

10 20 30 40 50

0.05

0.10

0.15

0.20

Figure 1: Solutions (from left to rigth) s(t), u1(t) and u2(t) of (3) with
three different initial points
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We consider now the model (20) where the spatial variable x is in
the interval [0, X] with the following boundary conditions, modeling
a closed biological system

∂s

∂x
(0, t) =

∂s

∂x
(X, t) = 0,

∂u1

∂x
(0, t) =

∂u1

∂x
(X, t) = 0,

∂u2

∂x
(0, t) =

∂u2

∂x
(X, t) = 0,

t ≥ 0

(26)

and initial conditions:

s(x, 0) = 1, 0 ≤ x ≤ X

u1(x, 0) =

{
0.75 x ≥ 0.95X

0 0 ≤ x < 0.95X

u2(x, 0) = 0, 0 ≤ x ≤ X

We take the diffusion coefficient to be D = 0.05 and X = 10.
We obtain the wave profiles, shown in Figure 2. Those correspond
to the results, obtained in Section 2: the wave solution connects the
stationary points of the nondistributed system (3).

2 4 6 8 10

0.85

0.90

0.95

1.00

(a) s(x, t)

2 4 6 8 10

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(b) u1(x, t)

2 4 6 8 10

0.01

0.02

0.03

0.04

(c) u2(x, t)

Figure 2: A travelling wave solution of the system (20), connecting
the stationary points (1,0,0) and (0.803998,0.144175,0.040262)

Using the formula from Remark 3.1, we obtain the estimate q ≈
0.173205. Given this estimate, we show that the solutions of the ODE
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system (3) correspond to the wave profile of the solution, obtained
from the original reaction-diffusion system (20) and thus, showing the
existence of a heteroclinic orbit between the two equilibrium points in
(23), see Figure 3.

(a) s(ξ) (b) u1(ξ) (c) u2(ξ)

Figure 3: Solutions for s(ξ), u1(ξ) and u2(ξ) in (23), corresponding to

the heteroclinic orbit, connecting the stationary points Ê0 and Ê∗

Our numerical experiments suggest that in the case when the in-
ternal equilibrium E∗ = (s∗, u∗1, u

∗
2) exists the solution of the system

(20) behaves like the travelling wave solutions for some period of time
when the initial conditions are “forgotten” and the boundary condi-
tions have not started acting yet. Let us illustrate this with the follow-
ing example. We consider the model (20) with boundary conditions
(26) and the following initial conditions:

s(x, 0) = 1, 0 ≤ x ≤ X;

u1(x, 0) =

{
1 x ≥ 0.95X

0 0 ≤ x < 0.95X;

u2(x, 0) =

{
0.15 x ≥ 0.95X

0 0 ≤ x < 0.95X.

In Figure 4 the solution is plotted for different values of t, in order
to show how it converges to the wave profile, that we have already
discussed.
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(a) Numerical approximation for s(x, 0), s(x, 2.5), s(x, 7.5), s(x, 12.5),
s(x, 17.5)
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(b) Numerical approximation for u1(x, 0), u1(x, 2.5), u1(x, 7.5), u1(x, 12.5),
u1(x, 17.5)

0 2 4 6 8 10
x

0.05

0.10

0.15

u2

0 2 4 6 8 10
x

0.05

0.10

0.15

u2

0 2 4 6 8 10
x

0.05

0.10

0.15

u2

0 2 4 6 8 10
x

0.05

0.10

0.15

u2

0 2 4 6 8 10
x

0.05

0.10

0.15

u2

(c) Numerical approximation for u2(x, 0), u2(x, 2.5), u2(x, 7.5), u2(x, 12.5),
u2(x, 17.5)

Figure 4: Convergence of the solutions of the model (20) to the trav-
elling wave solution

Let us now study the two-dimensional case. Introducing a second
spatial variable y, the model takes the form:

∂s

∂t
= D

∂2s

∂x2
+D

∂2s

∂y2
− k1u1s− (α + β)u2s+ dr(1− s)

∂u1

∂t
= D

∂2u1

∂x2
+D

∂2u1

∂y2
− k1u1s+ k2u2 + αu2s− dru1

∂u2

∂t
= D

∂2u2

∂x2
+D

∂2u2

∂y2
+ k1u1s− k2u2 + βu2s− dru2.

(27)

We solve this system numerically to obtain the wave profiles visu-
alized in Figure 5.

One more step to understanding the effect of the diffusion is to
compare models (3) and (20). Let us note that the first one describes
a stirred bioreactor and the second one – an unstirred bioreactor. The
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(a) s(x, y, t) (b) u1(x, y, t) (c) u2(x, y, t)

Figure 5: A travelling wave solution of (27)

comparison between the two models can give us a better understanding
of the difference between the two processes.

We introduce the notation

S(t) :=
1

X

∫ X

0

s(x, t)dx

U1(t) :=
1

X

∫ X

0

u1(x, t)dx

U2(t) :=
1

X

∫ X

0

u2(x, t)dx,

where s(x, t), u1(x, t) and u2(x, t) are the solutions of (20). Those are
the total amounts of the substrate, bacteria in lag and bacteria in log
phase, respectively, in the unstirred bioreactor at time t (assuming a
unit volume).

The corresponding quantities for the model (3) (i. e. the continu-
ously stirred bioreactor model) are exactly the values of the solution
at time t.

5 Conclusion

The paper is devoted to studying a bioreactor model describing micro-
bial competition between bacteria in different growth phases. Origi-
nally the model was proposed in [1] for a batch culture. This model is
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modified here by introducing first additional terms to describe a ho-
mogeneous continuously stirred bioreactor dynamics (3). The analysis
of the latter model includes computation of the equilibrium points and
studying their asymptotic stability. Basic properties of the solutions
like uniform boundedness and uniform persistence are also established.
In a second step the model is extended by adding diffusion terms to
the equations of (3) to describe the spatial dispersal of the bacteria,
i. e. to take into account the nonhomogeneity conditions in the biore-
actor. For the latter model, solutions in the form of travelling waves
are found. Results from numerical simulations are provided as demon-
strations of the theoretical studies as well as for comparison between
the two models.
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