A Model-based Analysis of Glycolytic Oscillations and Electrical Activity in Pancreatic α -cells

 $\label{eq:constraint} \underbrace{ \mbox{Edgar Olivos S.}^1, \mbox{Hugo E. Romero C.}^{1,2}, \mbox{Geneviève Dupont}^2, \mbox{Virginia} \\ \mbox{González-Vélez}^1 \\$

¹ Basic Sciences and Engineering Division, UAM Azcapotzalco, México ² Unité de Chronobiologie Théorique, Université Libre de Bruxelles olivosse@gmail.com

Keywords: pancreatic α -cells, glycolytic oscillations, KATP channels, calcium modelling

It is well known that glucagon secretion is essential in blood glucose homeostasis and its defective regulation in diabetes disease has also been established [1]. Therefore, it is of key physiological interest to elucidate the underlying mechanisms of stimulus-secretion coupling in α -cells. Glucagon secretion in this cell type is associated with cytosolic Ca^{2+} increase evoked by firing action potentials at low glucose concentration. However, given the complexity of the network of regulations involved in this process, modelling approaches are required [2]. Due to evidence of metabolic oscillations in this cell type [3], we analysed the possible contribution of glycolytic oscillations to the characteristic electrical activity in α -cells. To do it, we modified the model proposed by Bertram, et al. (2004) which is capable to reproduce not only glycolytic and electrical oscillations but also compound oscillations in β -cells. Since glycolytic behaviour is expected to be similar in α - and β -cells, we focused on the differences in electrical activity, specifically in cell capacitance and KATP channels. We found that because of cell capacitance and difference in maximal conductance of KATP channels, α -cells are electrically active at low glucose, in contrast to the situation in β -cells. Besides, the model suggested that the electrical activity of α -cells is insensitive to glycolytic oscillations.

[1] Y. Lee *et al.*, *Metabolic manifestations of insulin deficiency do not occur without glucagon action*, Proceedings of the National Academy of Sciences **109** 14972–14976 (2012).

[2] M. Watts and A. Sherman, *Modeling the Pancreatic alpha-Cell: Dual Mechanisms of Glucose Suppression of Glucagon Secretion*, Biophysical Journal **106** 741–751 (2014).

[3] J. Li, Q. Yu, P. Ahooghalandari, F. M. Gribble, F. Reimann, A. Tengholm and E. Gylfe, Submembrane ATP and Ca^{2+} kinetics in α -cells, unexpected signaling for glucagon secretion, Federation of American Societies for Experimental Biology Journal **29** 3379–3388 (2015).