Multiple Solutions for a Nonlinear Discrete Fourth Order p-Laplacian Equation

Nikolay Dimitrov
Department of Mathematics, University of Ruse, Bulgaria
ndimitrov@uni-ruse.bg

Keywords: Fourth order difference equation, p-Laplacian, variational methods.

In this paper we study the existence of multiple solutions for a nonlinear discrete fourth order p-Laplacian equation. Similar kind of problems appears in some models from population biology. The proof of the main results is based on the three critical points theorem due to B . Ricceri [1]. An example is given.

We obtain criteria for the existence of three solutions for the following fourth order problem

$$
\Delta^{2}\left(\varphi_{p}\left(\Delta^{2} u(t-2)\right)\right)+\alpha \varphi_{p}(u(t))=\lambda f(t, u(t)), \quad t=1,2, \ldots, T, T \geq 2
$$

with the boundary condition

$$
u(0)=\Delta u(-1)=\Delta^{2} u(T)=0, \quad \Delta\left(\varphi_{p}\left(\Delta^{2} u(T-1)\right)\right)=\mu g(u(T+1))
$$

where α, λ, μ are real parameters, f and g are continuous and $\varphi_{p}(x)=$ $|x|^{p-2} x, p \geq 2$.

Other discrete p-Laplacian problems using variational methods are studied in [2].

References

[1] B. Ricceri, A further three critical points theorem, Nonlinear Anal. 71, 2009.
[2] Y. Long and H. Shi, Multiple Solutions for the Discrete p-Laplacian Boundary Value Problems, Discrete Dynamics in Nature and Society, 2014.

