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Abstract

The purpose of this research is to model the dynamics of
phytoplankton population and chlorophyll-a contained therein,
usually modeled by differential equations. As a modelling tool
we propose the multitype branching stochastic processes of
Bellman-Harris. The proposed models could be applicable not
only for populations of unicellular organisms, but also for ar-
bitrary sets of objects which operate a certain period of time
and then split into two newborn objects.

1 Introduction

It is customary to call phytoplankton the microscopic aquatic species,
mostly unicellular. Phytoplankton is one of the most ancient inhab-
itants of our planet, playing key role at the base of the ocean and
marine food chains. It also controls the global carbon cycle which
has a significant impact on the climate regulation. Last but not least
phytoplankton is a key factor in ecology.
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The purpose of this research is to model the dynamics of phytoplank-
ton population, usually modeled by differential equations [8]. The
proposed models could be applicable not only for populations of uni-
cellular organisms, but also for arbitrary sets of objects which operate
a certain period of time and then split into two newborn objects.
Data on the amount of chlorophyll-a may be obtained by satellite and
the chlorophyll-a quantity in a unit biomass phytoplankton is known
[3,4]. Therefore one of our goals is to give a possible model, such that,
wherever in we can treated as a single particle not the whole cell phy-
toplankton, only the chlorophyll-a quantity, contained in.
The article consists of three sections. In the next, second section, we
try to analyse the difference between the cell division mechanisms and
propose as a model multitype branching stochastic process of Bellman-
Harris. There are derived equations for the generating functions. Re-
spectively there are expressed the first moments, as well as their par-
ticular cases are presented in the second part of the second section.
In Section 2.2. also are obtained the expected number of particles.
There are estimated the asymptotic behaviour in the infinity for the
obtained three-types processes. In the third section it is presented the
model simulation of the diatom population.

2 Phytoplankton model

The cells reproduce by cell division, split into two daughter cells, in
general not identical. In this process the role of the particle will be
played by a single phytoplankton cell. Assume particles evolve inde-
pendently (branching condition). There are about six hundred differ-
ent species phytoplankton on the Bulgarian Black Sea coast. From
now on, we focus on one of the species and take in consideration arbi-
trary time. (For example, diatoms, one of the most common marine
species phytoplankton, their size may vary between thirty and a hun-
dred and fifty microns [5].)
Let r = r(T ) be the birth size of a particle T . More accurately r is the
maximal distance between two points on particle T . Let Ai(xi, yi, zi)
and Aj(xj, yj, zj) be two random points over the particle.



That is to say

r = max
i,j

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2. (1)

It is assumed an additional structure of the birth size motion in line.
We consider a parent particle denoted by Γ0, and assume a birth size
r0. After a random time Γ0 dies or splits into two particles Γ01 and
Γ02, which birth sizes then move to the random points r01 = r0 + x1,
r02 = r0 + x2. Let us designate the birth size-shift by ∆λ. For any
variety phytoplankton then exists min and max r(T ) := d′′. Divide
∆ := [d′, d′′] into n subintervals ∆1, . . . ,∆n with lengths a := (d′′ −
d′)/n, endpoints [ci, ci+1] and midpoints ri := (ci + ci+1)/2, where
c0 = d′, ci := c0 + ai. Designate k(i) = min(i − 1, n − i). The cells
are born, evolve and divide with probability ρ or die without leaving
progeny with probability (1 − ρ). Let the random variables Λr and
τi are defined over the probability space (Ω,=, P ) for integer, n0 and
i = 1, . . . , n. Consider the process

{Z(t), t ≥ 0 | Z(0) = Z0},Z(t) = (Z1(t), . . . , Zn(t)). (2)

If Ti reaches maturity separated to Ti+l and Ti−l with probability
pi(i+l); i = 1, . . . , n and l = 0, 1, 2, . . . , k(i). Ti has for a lifetime the
random variable (r.v.) τi, with distribution function (d.f.) Gi(t) =
P (τi ≤ t), i = 1, . . . , n. Assume that every cell was born of zero age
and exclude the instantaneous death at birth. Therefore Gi(0) =
Gi(0+) = 0. {Z(t), t ≥ 0} is a multitype branching process of
Bellman-Harris (BPBH) [6, 10], it is logical to accept that pi(i−l) =
pi(i+l) for l = 0, 1, ..., k(i). The mechanism of cell division of the par-
ticles is illustrated in Figure 1.
Denote sets of points

C := {−k(i),−k(i) + 1, . . . , 0, 1, . . . , k(i)}, (3)

D := {i = 1; j = 2, . . . , n} ∪ {i = n; j = 1, . . . , (n− 1)}, (4)

and define pi(i+l) as follows [12]



Definition 1.

pi(i+l) =



0 l /∈ C
1

σi
√
2π

ci+l+1∫
ci+l

e
− (t−ri)

2

2σ2
i dt l ∈ C

1−
n∑
j=1
j 6=i

pij l = 0 (i.e. j = i)

Therefore p11 = pnn = 1;
n∑
j=1

pij = 1; i = 1, . . . , n; pij = 0 for i, j ∈ D.

For each phytoplankton cell the following conditions are fulfilled

Conditions 1
1. Any Ti reaches maturity with a probability ρ, when splits into

exactly two daughters Ti+l and Ti−l.
2. The birth size r consists of a latent factor handed down by

the mother, and of an individual contribution [7]. The shift of r is

∆λ ∈ Ñ(0, σ2), where the transition probabilities pij are given by
Definition 1.

Figure 1: Mechanism of division for particles T1, T2 and Tn.

2.1 Equations

DenoteNn = {α =(α1, ..., αn):αi = 0, 1, ...; i = 1, ..., n}r = (r1, . . . , rn),
~0 = (0, . . . , 0︸ ︷︷ ︸

n

), ~1 = (1, . . . , 1︸ ︷︷ ︸
n

), s = (s1, . . . , sn), F = (F1, . . . , Fn).



Proposition 1. For the moments of the n-types BPBH Z(t) with any
d.f. Gi(t) and with probability law (p.l.) as in Definition 1 we have

mij(t) = δij[1−Gi(t)] + 2ρpii

t∫
0

mij(t− u)dGi(u)

+ρ

k(i)∑
l=1

pi(i+l)

t∫
0

[m(i−l)j(t− u) +m(i+l)j]dGi(u). (5)

Proof. The individual generating function (i.g.f.) of Z(t) is f(s) =
(f1(s), . . . , fn(s)). Respectively by components for i = 1, . . . , n we
have

fi(s1, ..., sn) = 1− ρ+ ρ

k(i)∑
l=0

pi,i+lsi−lsi+l. (6)

For i = 1, n we receive

fi(s1, s2, ..., sn) = 1− ρ+ ρs2i . (7)

For the generating function (g.f.) F (t; s) = E{sZ(t) | Z(0) = ~1} it is
valid

F (t, s) = s[1−G(t)] +

t∫
0

f [F (t− u, s)]dG(u)

=
∑
r∈Nn

P{Z(t) = r | Z(0) = ~1}sr11 ...srnn . (8)

Fi(t, s) = E{sZ(t) | Z(0) = ei}
=

∑
r∈Nn

P{Z(t) = r | Z(0) = ei}sr11 ...srnn . (9)

From (6) and (8) we obtain

Fi(t, s) =si[1−Gi(t)]+
t∫

0

fi[Fi−k(i)(t− u, s), Fi−k+1, ..., Fi+k(t− u, s)]dGi(u).
(10)



Therefore

Fi(t, s) =si[1−Gi(t)] + (1− ρ)Gi(t)

+ ρ

t∫
0

[piiF
2
i + pi(i+1)Fi−1Fi+1, ..., pi(i+k(i))Fi−k(i)Fi+k]dGi(u).

(11)

mij(t) = E{Zj(t) | Z(0) = ei} =
∂Fi
∂sj
|s=~1 . (12)

After differentiation in (10)

mij(t) =δij[1−Gi(t)]

+ ρ

k(i)∑
l=0

pi(i+l)
∂

∂sj

t∫
0

Fi−l(t− u, s)Fi+l(t− u, s)dGi(u) |s=~1 .

(13)

mij(t) = δij[1−Gi(t)] +ρ
k(i)∑
l=0

pi(i+l)
t∫
0

[m(i−l)j(t−u) +m(i+l)j]dGi(u)

which proves the proposition. 2

For all t ≥ 0 m1j(t) = 0 if j 6= 1, mnj(t) = 0 if j 6= n. For i = 1, n
receive k(i) = 0, l ≡ 0 and

mii(t) = 1−Gi(t) + 2ρpii

t∫
0

mii(t− u)dGi(u); i = 1, n. (14)

(14) are called equations of renewal, their solutions are known [1,2].
From (12) for all n and j = 1, . . . , n we receive

m2j(t) = 2ρp22

t∫
0

m2j(t− u)dG2(u)

+ρp23

t∫
0

(m1j(t− u) +m3j(t− u))dG2(u). (15)



Denote the partial derivatives of fi by mij

mij :=
∂fi
∂sj
|s=~1=


0 j 6= i+ l l = 0, 1, . . . , k(i)
ρpij j = i+ l l = 1, 2, . . . , k(i)
2ρpii j = i

Recall that when 2ρpiiG(0+) < 1, as is the case under consid-
eration, equation (14) admits a unique solution, that is bounded on
bounded intervals.

Denote the Laplace transform Ĝ(u) =
∞∫
0

e−αudG(u). The asso-

ciated Malthus parameter α is defined as the root to the equation
θĜ(u) = 1. We will assume, that α always exists.

Proposition 2. For n-types Z(t) with Gi(t) ∈ Exp(λi); i = 1, n, we
have

m11(t) ∼ eλ1t
(2ρ− 1)(α1 + λ1)

2

α14ρ2
, (16)

mnn(t) ∼ eλnt
(2ρ− 1)(αn + λn)2

αn4ρ2
. (17)

Proof. For i = 1, n we get mii(t), considering BPBH Vt with one
type of particles. Then for m(t) being the measure m(t) := Eξ(t),
number m0, A(t) := EVt.

A(t) = 1−G(t) +m

t∫
0

A(t− u)dG(u). (18)

The Malthus parameter governs the asymptotic behavior of the func-
tion U(t). When m ≥ 1, the equation mG̃(u) = 1 has a unique real
solution α ≥ 0. When m < 1, a solution may not exists, but if it does
it has to be negative. We have [2]

A(t) ∼ eαt

∞∫
0

e−αu(1−G(u))du

m
∞∫
0

ue−αudG(u)

, (19)



therefore

A(t) ∼ eαt
m− 1

am2
∞∫
0

ue−αudG(u)

. (20)

From p11 = pnn = 1, and from the above formulas it follows αi =
λi(mii − 1), i = 1, 2, 3, and from formula (14) the proposition follows.
2

2.2 3-types BPBH Z(t) = (Z1(t), Z2(t), Z3(t)) with
arbitrary lifespan d.f. Gi(t), i = 1, 2, 3

Recall that k(i) =min(i − 1, n − i). In (5), (10), (13) we received
fi,Fi(t, s), mii for n-types BPBH. For n = 3, k(1) = k(3) = 0,
k(2) = 1, therefore fi(s1, s2, s3) = 1− ρ+ ρs2i ; i = 1, 3, f2(s1, s2, s3) =
1− ρ+ ρp22s

2
2 + ρp23s1s3. We have

m12(t) = m13(t) = m31(t) = m32(t) = 0, (21)

m21(t) = 2ρp22

t∫
0

m21(t− u)dG2(u) + ρp23

t∫
0

m11(t− u)dG2(u), (22)

m22(t) = 1−G2(t) + 2ρp22

t∫
0

m22(t− u)dG2(u), (23)

m23(t) = 2ρp22

t∫
0

m23(t− u)dG2(u) + ρp23

t∫
0

m33(t− u)dG2(u). (24)

For the next proposition introduce the d.f. G̃i(t) = m
∫ t
0
e−αiudGi(u),

i = 1, 2, 3, and define the mean µ̃ =
∫∞
0
udG̃(u), assuming that the

integral is finite.

Proposition 3. For the asymptotic behaviour of Z(t) = (Z1(t), Z2(t),
Z3(t)) with Z(0) = (1, 1, 1), when t → ∞ we have for EZi(t), i =
1, 2, 3, the expressions presented in Table 1, wherein Kj

i , j = 1, 2, 3,



are given by
Ki

1 = m2i(2ρpii − 1)/(αi2ρpiim22µ̃iµ̃2),
Ki

2 = (2ρp2i)/(m22µ̃2)
∫∞
0
e(δi−αi)umii(u)du,

Ki
3 = 2ρp2i[(2ρpii − 1)/(αi2ρpiiµ̃i)][Ĝ2(αi)/(1− 2ρp22Ĝ2(αi))],

δi = αi − α2, and Ĝ2(αi) =
∫∞
0
e−αiudG2(u).

Table 1.
EZi(t)i=1,3 ∼ EZ2(t) ∼

δi = 0 Ki
1te

α2t + [(2ρ− 1)/(αi2ρµ̃i)]e
αit

[(2ρp22 − 1)

(α22ρp22µ̃2)]eα2t

δi < 0 Ki
2e
α2t + [(2ρ− 1)/(αi2ρµ̃i)]e

αit δ2 ≡ 0

δi0 Ki
3e
αit + [(2ρpii − 1)/(αi2ρµ̃i)]e

αit δ2 ≡ 0

Proof. The asymptotic behaviour of Zi(t), i = 1, 3 depends on
two Malthus parameters αi and α2. In [1] the authors studied the
asymptotic behaviour of two-types BHBP with i.g.f. h1(s1, s2) = p0 +
p1s

2
1 + p2s2 and h2(s2) = 1 − q + gs22, 0 ≤ q ≤ 1, which appears

as particular case at issue in this statement. It is not difficult to
deduce for {Z(t) = (Z1(t), Z2(t), Z3(t)) | (Z(0) = (0, 1, 0)} that m2i(t),
i = 1, 3 satisfy

m2i(t) ∼


Ki

1te
α2t δi = 0

Ki
2e
α2t δi < 0

Ki
3e
αit δi0

For i = 1, 3 EZi(t) | (Z(0) = (1, 1, 1)) = mii(t) +m2i(t) and EZ2(t) =
m22(t). It is well known that mii(t) = (mii − 1)/(αi2ρµ̃i)e

αit for
i = 1, 2, 3. 2

Corollary 1. (Markov case) When Gi(t) = 1 − e−λit, i = 1, 2, 3,
the Malthus parameters are given by αi = λi(mii− 1). It follows from



(22)–(24) that mii(t) = eαit. Similarly for j = 1, 3 m2j(t) = m2jλ2te
α2t

when αi = α2 and m21(t) = m21λ2(e
α1t − eα2t)/(α1 − α2) when αi 6=

α2. Therefore, in accordance with the value of δi = αi − α2 we have
expression for Em2i(t), i = 1, 3 as in Table 2.

Table 2.

Em2i(t)i=1,3 ∼ Ki
j, j = 1, 2, 3

δi = 0 Ki
1te

α2t Ki
1 = m21λ2

δi < 0 Ki
2e
α2t Ki

2 = −m21λ2/δ
δi0 Ki

3e
αit Ki

3 = m21λ2/δ

Furthermore we have
EZ2(t) = eα2t, EZi(t) | (Z(0) = (1, 1, 1)) = eαit +m2i(t), i = 1, 3.

During the flowering of phytoplankton there is a boom in the pop-
ulation size. We model the phytoplankton blossoming introducing the
next condition.

Condition 2
The cell division in one of the particles gives rise to division at the

same time in all other particles.

Proposition 4. Consider BPBH {Z(t) = (Z1(t), Z2(t), Z3(t)) | Z(0) =
(1, 1, 1)} under Condition 2. all present particles leave the same ran-
dom time, i.e. Z(t) is discrete-time process Zn = (Z1

n, Z
2
n, Z

3
n), n =

1, 2, ... with Z0 = (1, 1, 1). After a random time with probability ρ each
particle generates two new, according to the probability law, given by
Definition 1. Denote by τ (k) the moment of the k-th cell division,
k = 1, 2, . . .. For EZ(t) = (EZ1(t), EZ2(t), EZ3(t)) we have values as
in Table 3.

Table 3.

E(Z1) ≡ E(Z3) E(Z2)

t ∈ [τ (k), τ (k+1)) 2k−1ρkp23(p
k
22 − 1)/(p22 − 1) + (2ρ)k 2kρkpk22

k=0,1,2,. . . = 2kρk{p23(1− pk22)/[2(1− p22)] + 1}



Proof. Consider firstly {Z(t) = (Z1(t), Z2(t), Z3(t)) | Z(0) =
(0, 1, 0)}. The expected number of available particles T1 after each
performed cell division EZ1

1(t), EZ2
1(t), . . . EZn

1 (t), . . . is:

E[Z
(1)
1 (t)] = ρp23,

E[Z
(2)
1 (t)] = 2ρ2p22p23 + 2ρ2p23 = 2ρ2p23(1 + p22),

E[Z
(3)
1 (t)] = 22ρ3p23(p22 + 1) + 22ρ3p222p23 = 22ρ3p23(1 + p22 + p222).

Accept induction assumption: E[Z
(k)
1 (t)] = 2k−1ρkp23(1 + p22 + p222 +

. . .+ pk−122 ). Note that (1 + p22 + p222 + . . .+ pk−122 ) is sum of geometric

progression, then E[Z
(k)
1 (t)] = 2k−1ρkp23(p

k
22 − 1)/(p22). Directly is

obtained E[Z
(k+1)
1 ] = 2kρk+1p23(p

k+1
22 − 1)/(p22). Similarly we obtain

E[Z
(k)
3 (t)]. It is not difficult to deduce from here the results presented

in Table 4.

Table 4.

{Z(t) = (Z1(t), Z2(t), Z3(t)) | (Z(0) = (0, 1, 0)}
EZ3 ≡ EZ1(t) EZ2(t)

t ∈ [0, τ (1)) 0 1

t ∈ [τ (1), τ (2)) ρp23 2ρp22
t ∈ [τ (2), τ (3)) 2ρ2p23(1 + p22) 22ρ2p222
t ∈ [τ (3), τ (4)) 22ρ3p23(1 + p22 + p222) 23ρ3p322

. . . . . . . . .

t ∈ [τ (k), τ (k+1)) 2k−1ρkp23[(p
k
22 − 1)]/[(p22 − 1)] 2kρkpk22

. . . . . . . . .

We have 2k−1ρkp23(p
k
22−1)/(p22−1) = 2kρkp23(1−pk22)/[2(1−p22)]

and from Table 4., if Z(0) = (1, 1, 1), we receive Table 3.2

Proposition 5. Consider Z(t) = (Z1(t), Z2(t), Z3(t));Z(0) = (1, 1, 1))
under Condition 2. Let p23 = 2p22(=

2
3
) and ρ = 1

2
. We can reduce

Z(t) to three 1 − type processes denoted by Vi(t), i = 1, 2, 3. Ev-
ery particle of Vi(t) has a random lifespan and at his end either pro-
duces a new particle of the same type [11], with probability p22 or dies
without leaving a generation. τ (k) is the moment of k-th division in



each of the processes. Additionally a newborn particle immigrated at
any moment τ (k), k = 1, 2, . . . to the process Vi(t) for i = 1, 3. For
{E(Z(t) | Z(0) = (1, 1, 1) = (E(V1(t) | V1(0) = 1), . . . , E(V3(t) |
V3(0) = 1),k = 0, 1, . . .,the results presented in Table 5. are correct.

Table 5.

EZ1(t) ≡ EZ3(t) EZ2(t)

t ∈ [τ (k−1), τ (k))
1−pk+1

22

1−p22 = 1 + p22+. . . +pk22 pk22

Proof. Directly from Proposition 4, when ρ = 1/2, we obtain Table 6.

Table 6.

EZ1(t) ≡ EZ3(t) EZ2(t)

t ∈ [0, τ (1)) p22 + 1 p22
t ∈ [τ (1), τ (2)) p22(1 + p22) + 1 p222
t ∈ [τ (2), τ (3)) p22(1 + p22 + p222) + 1 p322

. . . . . . . . .

t ∈ [τ (k−1), τ (k))
1−pk+1

22

1−p22 = 1 + p22 + . . .+ pk22 pk22
. . . . . . . . .

3 Model simulation of the diatom popu-

lation

In this section we simulate model Z(t) = (Z1(t), Z2(t), Z3(t)) | (Z(0) =
(1, 1, 1)) under Condition 2. with normal distributed lifespan and
ρ = 1/4, 1/2, 5/9. For the simulations we propose an algorithm, re-
alized using MATLAB. Recall that the birth sizes are r(T ) ∈ [d‘; d“]
and we divided this interval in n equal subintervals. According to
Definition 1 if n = 3 practically we could accept [d‘; d“] = 6σ be-
cause of the 3σ rule of the N(µ, σ). For the diatoms, one of the most
common species phytoplankton d‘ = 30µm, d“ = 150µm. We get



σ = 120/6 = 20. Then p21 = p23 ≈ 0, 1587 and p22 ≈ P (µ − σ <
r(T∗2) < µ + σ) = 2Φ(1) = 0, 6826, where Φ(x) is the Laplace func-
tion. From Proposition 4. we could get the results, presented in Table
7.

Table 7.

Z(t) = (Z1(t), Z2(t), Z3(t)) | (Z(0) = (1, 1, 1))

k = 0, 1, 2, . . . EZ1(t) ≡ EZ3(t) EZ2(t)

t ∈ [τ (k), τ (k+1))
0, 1587(2ρ)k(1− 0, 6826k)

0, 6348 + (2ρ)k
0, 6826k(2ρ)k

We offer algorithm like the given in [9], N - natural
(Step 1.) k := 1, m := 0.
(Step 2.) Generate 2(0, 1587(2ρ)k(1− 0, 6826k)/0, 6348 + (2ρ)k) +

0, 6826k(2ρ)k normal distributed random variables (lifespans).
(Step 3.) Find the minimum of the generated numbers in Step 2.
(Step 4.) Determine the endpoints of the intervals [τ (k), τ (k+1)).
(Step 5.) m := m+ 1.

〈m ≤ N〉 Y es k := k + 1 go to Step 2
No go to Step 6

(Step 6.) Plot result.
(Step 7.) End.
Figure 2, Figure 3 and Figure 4 represent the EZ for number of cell
divisions k = 1 . . . , N over the axis with three values of ρ: ρ = 1/4;
ρ = 1/2 and ρ = 5/9.



Figure 2: EZ for ρ = 1/4

Figure 3: EZ for ρ = 1/2



Figure 4: EZ for ρ = 5/9
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Conclusion
Phytoplankton is one of the most ancient inhabitants of our planet,
playing key role at the ocean and marine food chains.
It is modelled the dynamics of phytoplankton population, usually
modeled by differential equations. It is proposed, as a modelling tool,
multitype branching stochastic process of Bellman-Harris.
The proposed model could be applicable for a random populations of
unicellular organisms, but also for arbitrary sets of objects which op-
erate a certain period of time and then split into two newborn objects.
Data on the amount of chlorophyll-a may be obtained by satellite and
the chlorophyll-a quantity in a unit biomass phytoplankton is known.
It is possible to consider as a single particle in the proposed model,
not the whole cell phytoplankton, only the chlorophyll-a quantity, say
chlorophyll-unit. We can draw some conclusions about the phyto-



plankton amount dynamics, considering specific to any particular area
number of phytoplankton species and corresponding correlation coef-
ficients between phytoplankton and chlorophyll-a. On this basis the
obtained processes could help us to make accurate prediction about
the expected number of particles and its asymptotic behaviour in the
infinity.
Given any mechanisms to influence phytoplankton’s population size
we could possibly increase fish production for example. Phytoplank-
ton is of importance in ecological sense, climate regulation and feeding
people.
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