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Identification and development of a new active compounds is an ex-
tremely expensive (reflected in time - between 10 and 15 years [1] and
costs) and difficult process without a guaranteed result [2] (∼ 90% of the
initial candidates fail to be produces due to their toxicological properties
[3]). Traditional strategies based on experiments (animal models [4]) are
not anymore able to meet the actual needs in identification of new active
compounds while in silico approaches such as computer-aided drug design
[5], structure-based drug design [6], or virtual screening [7], are used nowa-
days.

Quantitative structure-activity relationships (QSARs) are mathemat-
ical relationships linking chemical structure and pharmacological activ-
ity/property in a quantitative manner for a series of compounds [8]. The
approaches are based on the assumption that the structure of chemical
compounds (such as geometric, topologic, steric, electronic properties, etc.)
contains features responsible for its physical, chemical and biological prop-
erties [9]. The linear regression analysis is the statistical method frequently
used in QSAR analysis since the main aim of the modeling is to identify a
model able to predict the activity of new compounds [10].

Problems solving strategies in linear regression modeling include ap-
proaches for dealing with effective assessment of assumptions (linearity,
independence of the errors, homoscedasticity, normality [11]), which seems
to be broken in QSARs analyses [12,13]; effective methods for model selec-
tion [11,14,15]; efficient methods for model diagnosis [16,17]; and adequate
approaches for assessment of predictive power of a QSAR model [18,19].

Here we emphasize problem solving strategies that address the main is-
sues that arise when developing multivariate linear regression models using



real data.
Other problems not addressed here include the dealing with not normal

distributed errors [20,21] and additional methods for estimation of regres-
sion parameters [22].
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