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Abstract. During the last decades models have been created to
achieve the description and the representation of phenomena and bi-
ological populations. These models are often an ordinary differen-
tial equations. A new population models are proposed in this article.
This models are named the Generalized Logistic Models and it is an
improvement-generalization of the already known, from the bibliog-
raphy, Logistic Equation (Model). The solution of the new model
is presented as well as its graph drown with Mathematica 11.0 and
properties for a more complete and spherical view.

1 Introduction

A population is a group of organisms of the same species (fishes, birds
etc.) that live in a particular area. The number of organisms in a
population changes over time because of births, deaths, emigration,
immigration and some outside factors. Of course, births and immi-
gration increase the size of the population, on the other hand deaths
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and emigration for example decrease its size. The increase in the num-
ber of organisms in a population is mentioned as population growth.
There are factors that can help populations grow and others than can
slow down populations from growing. Factors that limit population
growth are called limiting factors.

A model is simply a system of organisms, information or things
presented as a mathematical description of an entity. Thus Popula-
tion Models are approximations of reality described by mathematical
formulae (differential equations for example) or computer programs
and packages. Population Models are usually created and developed
to predict the behaviour of ecological systems and biological popula-
tions. As it can be observed Population Models can be very useful
and interesting, because they represent reality and some specific data
and because they are capable, in many occasions, to give accurate and
precise estimates that can help human mind to predict the future of
a population and to compare the results gained with similar results
from other models or from different populations [1].

2 The Logistic Equation

The Logistic Equation is widely used and very often seen, because it
has lots of applications and can be very useful in various models. Some
characteristic applications of the logistic equation is the population
growth problem (model) and the harvesting in a biological population
problem (model) [2].

Let us suppose that x(t) denotes the size of a biological population
at time t and x′(t) denotes the increase in the population. The carrying
capacity K of the biological environment is the maximum population
that the environment can stand. If the population equals this carrying
capacity then the deaths among the population become more than the
births and the population can not grow any more. Let us suppose that
a is the (positive) birth rate, which is not dependent of N and b is the
(positive) crowding coefficient which depends on the carrying capacity



of the population [3]. So it is true that :

x′(t) = a

(
1− x(t)

K

)
x(t) (2.1)

where a
K

= b.

2.1 Properties of the logistic equation

Equation (2.1) has equilibrium points when x′(t) = 0, that is when
x = 0 and x = K. Thus we can say that:

0 < x < K gives x′ > 0 and also that x > K gives x′ < 0.

So it can be observed that the point x = 0 is unstable since any
positive initial population will increase monotonically and try to reach
x = K. On the other hand, the point x = K is asymptotically stable
since if there is a small displacement from the point, the population
will tend again towards it [4].

2.2 The analysis and the graph of the function
F (x) = rx

(
1− x

K

)
Let F (x) = rx

(
1− x

K

)
. It is F (x) = rx

(
1− x

K

)
= − r

K
x2 + rx, which

is a parabola with respect to x. The maximum value is for x = K
2

, and
there are two roots x1 = 0, x2 = K. The position of the maximum
is symbolized by xMSY , while the maximum value of the function
(= 0.25Kr) is symbolized by MSY .

The graph of F (x) in the interval [0, K] is depicted in Figure 1.



Figure 1. Graph of the function F (x)

The roots of F (x) are 0 and K, therefore the functions x(t) = 0
and x(t) = K are the equilibrium solutions of the differential equation.

The graph of F (x) with r = 0.2 and K = 1, 2, 3, . . . , 12 is depicted
in Figure 2.

Figure 2. Graph of the function F (x) with r = 0.2 and
K = 1, 2, 3, . . . , 12



Similarly the graph of F (x) with K = 12 and r = 0.1, 0.2, 0.3, . . . , 1
is depicted in Figure 3.

Figure 3. Graph of the function F (x) with K = 12 and
r = 0.1, 0.2, 0.3, . . . , 1

2.3 The solution of the differential equation dx
dt =

rx
(
1− x

K

)
with x(0) = x0

It is dx
dt

= rx
(
1− x

K

)
with x(0) = x0, therefore

dx

dt
=
−r
K
x(x−K)⇒ − 1

K

(
1

x
− 1

x−K

)
dx = − r

K
dt

⇒
∫ (

1

x
− 1

x−K

)
dx =

∫
rdt

⇒ ln(x)− ln(x−K) = rt+ c1

⇒ x

x−K
= ert+c1 or x(t) = K

ertec1

ertec1 − 1
.



For t = 0, we get x(0) = K ec1
ec1−1 ⇒ ec1 = x0

x0−K , thus x(t) =

K ert
K−x0

x0
+ert

.

Let c = K−x0
x0

then x(t) = K ert

c+ert
, therefore

x(t) = K
1

1 + ce−rt
, t ≥ 0. (2.2)

The function x(t) which is defined by equation (2.2) is the solution
of the differential equation.

2.4 Analysis of the function x(t) = K 1
1+ce−rt

It is x(t) = K x0ert

K−x0+x0ert

• If x0 < K ⇒ K − x0 > 0⇒ x(t) < K, ∀t > 0

• If x0 > K ⇒ K − x0 < 0⇒ x(t) > K, ∀t > 0

• If x0 = K ⇒ x(t) = K, ∀t > 0

and lim
t→+∞

x(t) = K.

Concluding x(t) = K 1
1+ce−rt and thus lim

t→+∞
x(t) = K, therefore K

is a stable equilibrium. On the other hand 0 is an unstable equilibrium
[5].

The graph of x(t) for various initial values is depicted in Figure 4
and Figure 5.



Figure 4. Graph of the solutions x(t)

Figure 5. Graph of the solutions x(t)

3 First Generalization of Logistic Model

The function F (x) = rx
[
1−

(
x
K

)b]
is introduced, with b > 0.



Therefore the (logistic) differential equation takes the form

dx

dt
= rx

[
1−

( x
K

)b]
= F (x) (3.1)

which is named the Generalized Logistic Model.

3.1 The analysis and the graph of the function

F (x) = rx
[
1−

(
x
K

)b]
Let F (x) = rx

[
1−

(
x
K

)b]
= − r

Kbx
1+b + rx, therefore it is true that

F ′(x) = − r(1+b)
Kb xb + r. The root of F ′(x) is x = K

(1+b)
1
b
.

The graph of F (x) in the interval [0, K] is depicted in Figure 6.

Figure 6. Graph of the function F (x) with b = 3, r = 0.2 and K = 12

The roots of F (x) are 0 and K, therefore the functions x(t) = 0
and x(t) = K are the equilibrium solutions of the differential equation.

The graph of F (x) with r = 0.2, K = 12, and b = 0.5, . . . , 5.5 step
0.5 is depicted in Figure 7.



Figure 7. Graph of the function F (x) with r = 0.2, K = 12 and
b = 0.5, . . . , 5.5 step 0.5

3.2 The solution of the differential equation dx
dt =

rx
[
1−

(
x
K

)b]
with x(0) = x0

It is dx
dt

= rx
[
1−

(
x
K

)b]
with x(0) = x0, therefore

dx

dt
=
−r
Kb

x(xb −Kb)

⇒ dx

x(xb −Kb)
=
−r
Kb

dt⇒ − 1

Kb

[∫
dx

x
− 1

b

∫
dxb

xb −Kb

]
= −

∫
r

Kb
dt

⇒ lnxb − ln(xb −Kb) = brt+ c1 ⇒
xb

xb −Kb
= c2e

brt or

x = Kert b

√
c2

c2ebrt − 1
.



For t = 0 we get x(0) = K b

√
c2
c2−1 = x0 ⇒ c2 =

xb0
xb0−Kb , thus

x(t) = kert b

√√√√√ xb0
xb0−Kb

ebrt
xb0

xb0−Kb − 1
=

Kert

b

√
Kb−xb0
xb0

+ ebrt
.

Let c =
Kb−xb0
xb0

then x(t) = K ert
b√c+ert

, therefore

x(t) = K
1

b
√

1 + ce−brt
, t ≥ 0 (3.2)

The function x(t) which is defined by equation (3.2) is the solution of
the differential equation.

3.3 Analysis of the function x(t) = K 1
b
√
1+ce−brt

It is x(t) = K ertx0
b
√
Kb−xb0+xb0ebrt

.

• If x0 < K ⇒ Kb − xb0 > 0⇒ x(t) < K, ∀t > 0

• If x0 > K ⇒ Kb − xb0 < 0⇒ x(t) > K, ∀t > 0

• If x0 = K ⇒ x(t) = K, ∀t > 0

and lim
t→+∞

x(t) = K.

Concluding x(t) = K 1
b
√

1+ce−brt
and thus lim

t→+∞
x(t) = K, therefore

K is a stable equilibrium. On the other hand is an unstable equilib-
rium.

The graph of x(t) for various initial values is depicted in Figure 8.



Figure 8. Graph of the solutions x(t) of the Generalized Logistic
Equation

4 Second Generalization of Logistic Model

Consider now the function F (x) = kxb(a − x) − χxb+1 with b ≥ 1,
a > 0 and χ > 0. The equation dx

dt
= F (x) also seems to be of interest

for biomathematics.

Therefore the (logistic) differential equation

dx

dt
= rxb

(
1− x

K

)
= F (x) (4.1)

where r = ka andK = ka
k+χ

is another generalization of Logistic Model.



4.1 The analysis and the graph of the function
F (x) = rxb

(
1− x

K

)
.

Let F (x) = rxb
(
1− x

K

)
= − r

K
x1+b + rxb, therefore it is true that

F ′(x) = rbxb−1− r(1+b)
K

xb. The roots of F ′(x) are x = 0 and x = b
1+b

K.

The graph of F (x) in the interval [0, K] is depicted in Figure 9.

Figure 9. Graph of the function F (x) with r = 0.2, K = 12 and
b = 1.5, . . . , 4.0 step 0.5

4.2 The solution of dx
dt = rxb

(
1− x

K

)
with x(0) = x0

and natural b

It is dx
dt

= rxb
(
1− x

K

)
with x(0) = x0, therefore

dx

dt
= −r r

K
xb(x−K)⇒ dx

xb(x−K) = − r
K
dt

Denote Ib(x) =
∫

dx
xb(x−K)

⇒ Ib(x) = − 1

K

[∫
dx

xb
−
∫

dx

xb−1(x−K)

]
= − 1

K

[∫
dx

xb
− Ib−1(x)

]
.



Recursively

Ib(x) = − 1

K

[∫
dx

xb
− Ib−1(x)

]
=

− 1

K

[∫
dx

xb
− 1

K

[∫
dx

xb−1
− · · ·+ 1

K
I1(x)

]
. . .

]
,

where I1(x) =
∫

dx
x
−
∫

dx
x−K = ln x

x−K .

So for b = 2 we have I2(x) = 1
Kx
− 1

K2 ln x
x−K ,

for b = 3 we have I3(x) = 1
2Kx2

+ 1
K2x
− 1

K3 ln x
x−K ,

for b = 4 we have I4(x) = 1
3Kx3

+ 1
2K2x2

+ 1
K3x
− 1

K4 ln x
x−K , etc.

Suppose that b = n, then

In(x) =
n−1∑
j=1

1

jKn−jxj
− 1

Kn
ln

x

x−K
=

1

Kn

[
n−1∑
j=1

1

j

(
K

x

j

− ln
1

1− K
x

)]
.

Thus the solution of (4.1) with x(0) = x0 can be represented in the
form

t =
1

rKn−1

[
ln

1− K
x0

1− K
x

−
n−1∑
j=1

1

j

((
K

x

)j
−
(
K

x0

)j)]
(4.2)

For b = n = 2 the dependence of t and x, i.e. rt = 1
K

ln
1− K

x0

1−K
x

− 1
x
+ 1
x0

is depicted in the Figures 10, 11.



Figure 10. Graph for r = 0.02, K = 12 and x0 = 5, 7, 9, 11 (x0 < K)

Figure 11. Graph for r = 0.02, K = 12 and x0 = 19, 17, 15, 13
(x0 > K)

Remember that K = Ka
K+x

, so for any natural b

• If x0 < K ⇒ 1− K
x0
< 0⇒ 1− K

x
< 0⇒ x(t) < ka

k+χ
,∀t > 0

• If x0 > K ⇒ 1− K
x0
< 0⇒ x(t) > ka

k+χ
, ∀t > 0

• If x0 = K ⇒ x(t) = ka
k+χ

,∀t > 0



and lim
t→+∞

x(t) = ka
k+χ

.

Therefore K is a stable equilibrium. On the other hand 0 is an
unstable equilibrium.
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