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Abstract

Limiting resource is a angular stone of the interactions be-
tween species in ecosystems such as competition, prey-predators
and food chain systems. In this paper, we propose a planar sys-
tem as an extension of Lotka-Voterra competition model. This
describes two competitive species for a single resource which
are affected by intra and inter-specific interference. We give
its complete analysis for the existence and local stability of all
equlibria and some conditions of global stability. The model ex-
hibits a rich set of behaviors with a multiplicity of coexistence

Citation: Idy Ba, Papa Ibrihima Ndiaye, Mahe Ndao, Aboubakry Diakhaby. An
Extension of Two Species Lotka-Volterra Competition Model, Biomath
Communications, pp. 90-139, http://dx.doi.org/10.11145/bmc.2021.12.171

90

http://dx.doi.org/10.11145/bmc.2021.12.171


equilibria, bi-stability, tri-stability and occurrence of global sta-
bility of the exclusion of one species and the coexistence equilib-
rium. The asymptotic behavior and the number of coexistence
equilibria are shown by a saddle-node bifurcation of the level
of resource under conditions on competitive effects relatively to
associated growth rate per unit of resource. Moreover, we de-
termine the competition outcome in the situations of Balanced
and Unbalanced intra-inter species competition effects. Finally,
we illustrate results by numerical simulations.

Keywords: consumer-resource model; invariant manifolds; competition
outcome; Asymptotic behavior.
2010 AMS Subject Classification: 92D40, 34K19, 35B40.

1 Introduction
In nature, organisms of a species members live in a area with other
populations species and resources they need for their growth. When
a large number of organisms affect other populations species by their
presence or absence, in some cases of mixed populations species, two
or more species interact in a food chain and prey-predator systems
or compete for common resources such as food, light, space, etc. In
the situation of two species compete with each other for the same
resource, Hardin [1] argued that the Competitive Exclusion Principle
(CEP) formulated by Gause in [2] holds, this means that the "better"
competitor will eventually exclude the others. This principle has been
formally demonstrated in [3] with classical Lotka-Volterra competition
(LV) model analysis and set to theory [1].

Numerous evidences based on laboratory experiences and natural
observations are supporting the CEP. Among them, the complexity
of competitive situations make unclear the predictive strength of the
displayed species as Thomas Park and his collaborator experiments
showed in a closed universe under various conditions [5]. Beyond this
phenomena, the observed diversity of certain communities such as co-
existence of phytoplankton species competing for very limiting resource
is in apparent contradiction with Gause’s law. This paradox was origi-
nally described in aquatic biology by Hutchinson in [6], who suggested
that it could be resolved by factors such as vertical gradient of light or
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turbulence, symbiosis or commensalism, differential predation or suffi-
ciently frequent variations of the environment.

The generalization of (LV) model to more than two species have
led to deep ecological insights [7] and allowed to identify interesting
ecological phases and phase transitions [8] [9] without explain the phy-
toplankton paradox foundation. The implicit description of resources
in play for two or more competing species in such model apparently
hides the resources dynamics effects in competition outcome. There-
fore, recent works have proposed models taken account chaotic fluid
motion or water levels variations, spatio-temporal heterogeneity inter-
action with species to resolve the paradox [10]. These external factors
are well known to impact the densities of resources or heterogeneity
and availability.

The aim of this paper is to study the impact of resource level on
competition outputs in the overview of the CEP. MacArthur [11–15]
introduced first the class "consumer-resource models" which incorpo-
rate explicitly resource consummation in LV species equations.

MacArthur in [16] shows that a new species can compete on com-
munity if only its action of competition minimizes a quadratic function.
Also, a large number of competing species can coexist if the produc-
tive environment and the environmental variations can compromise
the CEP. Soon after, May and MacArthur in [17] tackle niches ecology
overlap problem by combining their quadratic functions.

Nevertheless, P. Chesson in [18] considered both exploitative com-
petition and interference competition in the model to generalize the
MacArthur’s [16] results and revealed that the arguments of Rough-
garden in [19] and [20] contrasted May and MacArthur [17] conclu-
sions on community structure. Specifically, he precises and reinforces
MacArthur’s [16] developments in the understanding and the empirical
measurements of LV coefficients that distinguish timescales of resources
and consumers in interaction.

Qualitatively, the MacArthur formulae is related to the Lyapunov
function which guarantied the global stability of the coexistence equi-
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librium of the model resource-consumer without necessarily having a
biological significance. In the literature, there exists a wide variety of
competition by interference which do not lead to a minimized quadratic
function form and the need to develop new models [19], [20, 21]. But,
in a largest view of competition modeling subject, some mathematical
models including density-dependent accessibility description are de-
veloped in bioreactor, food chain and prey-predators systems [22, 23],
[24–31].

In this paper, we propose and study a two species competition
model including explicit resource consumption and density-dependent
accessibility in the perspective to keep the effects of resource level vari-
ations and usual parameters relations with biological meaning on the
competition outcome. To shake to simplicity without loss general-
ity, the resource is assumed to be available in permanent regime and
its accessibility rate is density-dependent of competitive species. A
short description of biological parameters, assumptions, model equa-
tions and preliminary results such as positive and bounded solutions
are presented in section 2. In section 3, it is given preliminaries results
on two species Lotka-Volterra competition model as an occurrence of
the model according to balanced and unbalanced inhibitory effects of
two species intra and inter-specific inferences. The existence and sta-
bility analyses of coexistence and exclusion of one species equilibria of
the model are presented. Thereafter, an application of the general the-
oretical results obtained in section 3 in the circumstances of "Balanced"
and "Unbalanced" inhibitory effects conditions is devoted to section 4.
Section 5 presents some numerical illustrations of analytical results.

2 The Mathematical Model
We consider two species living together in a area with carrying capacity
K and consuming a single limiting resource. From James Mallet [32]
findings the carrying capacity is considered here to depend on habitat
conditions. We assume that the growth rate of each population is in-
hibited by members both of its own species and of the other species
as well as the accessibility of resource is affected by the presence of
the other species. Also, members of each population are assumed to
develop independently from each other. Let t be a fixed time, we con-
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sider the density xi(t) and xj(t) of individuals of species i and species
j respectively and denote by Z, r′i and sji the amount of available
resource, the effective growth rate per unit of resource consumption
of species i and the rate to which the presence of species j members
affects the growth of species i respectively. In addition, the food ac-
cessibility factor of species i constrained by the presence of members
of species j is supposed to be 1/(1 + pjxj(t)) where the proportion pj
is assumed constant. According to their assumptions, we describe the
two species competition consuming a single limiting resource by the
following system of equations.

dxi
dt

=
(

r′iZxi
1 + pjxj

)
− siix2

i − sijxixj,

dxj
dt

=
(
r′jZxj

1 + pixi

)
− sjjx2

j − sjixixj,

(1)

For simplicity and without loss generality, the following model is con-
sidered throughout this paper

dxi
dt

=
(
r′iZxi
1 + xj

)
− siix2

i − sijxixj,

dxj
dt

=
(
r′jZxj

1 + xi

)
− sjjx2

j − sjixixj,

(2)

with initial conditions xi(0) = x0i ≥ 0 and
xj(0) = x0j ≥ 0.
This model parameters and variables definitions are listed in table 1.
In addition, we assume for parameters that r′i > 0, r′j > 0, sii > 0, sjj >
0, sji > 0, sij > 0, K > 0, 0 ≤ Z <

s

r
K and s = min{sii, sjj, sji, sij},

r = max{r′i, r′j} and consider the domain of biological interest.

Ω = {(x, y) ∈ R2
+, x+ y ≤ K}.

The well-posedness of the model (2) is then given by the next theorem.

Theorem 2.1.
Assuming that the initial conditions lie in Ω, the system of equations
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for two competitive species consuming a single limiting resource model
(2) has a unique solution that exists and remains in Ω for all time
t ≥ 0.

Proof.
The right-hand side of Equation (2) is continuous with continuous
partial derivatives in Ω, so the system of equation (2) has a unique
solution. We now show that Ω is forward-invariant. If xi = 0 then
dxi
dt

= 0 and the system (2) is reduce to one species j equation:

dxj
dt

= r′jZxj

(
1− sjj

rjZ
xj

)
(3)

It’s known that (xj-axis) is invariant such that dxj

dt
> 0 if only if xj > Kj

when Z > 0. If
xi + xj = K then
dxi
dt

+ dxj
dt

= r′ixiZ

1 + xj
+
r′jxjZ

1 + xi
− siix2

i

− sjjx2
j − sjixixj − sijxixj. This implies

dxi
dt

+ dxj
dt
≤ r′ixiZ

1 + xj
+
r′jxjZ

1 + xi
−sx2

i −sx2
j −2sxixj from the assumption

s = min{sii, sjj, sji, sij}. So, it results that
dxi
dt

+ dxj
dt
≤ K(rZ−sK) <

0 from hypothesis 0 < Z <
s

r
K and r = max{r′i, r′j}. Therefore, none

of the orbits can leave Ω and a unique solution exists for all time
t ≥ 0.

The first part of this proof see equation (3) provides the following
useful remark.

Remark 2.1.
As it was found for the Lotka-Volterra system (4), it states that in the
absence of one species the system (2) is reduced to the logistic equation
describing the living species when the limiting resource is available and
accessible for its species. For instance, if xi = 0 the system (2) is
reduced (3) with rj = r′jZ as growth rate and Kjj = r′jZ/sjj as its
limit growth when Z > 0.
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Table 1: Biological meanings of parameters used in the system (1) and
their units.

Parameters Descriptions units
t date (t) (time)
Z density of resource R(resource)
xi density of the species i over time B(biomass)
r′i Consumption rate per unit of resource (tR)−1

sii nuisance of the species i on itself per unit of time and biomass (tB)−1

sij nuisance of the species j on species i per unit of time and biomass (tB)−1

pi fraction of species j affecting resource accessibility of an individual of species i percent

3 Mathematical analysis
In this section, we determine the model (2) equilibria and study their
local and global asymptotic stability.

3.1 Lotka-Volterra-MacArthur model outcomes: Com-
petitive effects relations

In the literature, two competitive species models outcomes are consid-
ered in the sense of asymptotic behaviors of the system under study.
Particularly, the developments in this subsection recall and focus on
existing equilibria asymptotic stability results according to usual rela-
tions between parameters of the model with biological sense.
The following types of equilibria have been intensively studied:

• E0 = (0, 0) called the extinction equilibrium where both species
populations are extinct: xi = xj = 0.

• Ei = (Kii, 0) called the exclusion of species j equilibrium where
species j population is excluded: xi > 0 and xj = 0.

• Ej = (0, Kjj) called the exclusion of species i equilibrium where
species i population is excluded: xi = 0 and xj > 0.
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• E∗ = (x∗i , x∗j) called a coexistence equilibrium, where both species
populations survive: x∗i > 0 and x∗j > 0.

Note that in the pi → 0, pj → 0 limits,
ri = r′iZ > 0 and rj = r′jZ > 0 the model (1) is reduced to the classic
Lotka-volterra competition model in [3].

ẋi = xi(ri − siixi − sijxj)

ẋj = xj(rj − sjixi − sjjxj)
(4)

In this case, the trivial equilibria E0, Ei, and Ej always exist. But,
as it’s well known, the coexistence equilibrium existence and equilib-
ria stability of the system (4) depend on relations between expressions
tkl = skl/rk, (k, l ∈ {i, j}) defined as the competitive effect of species l
on species k relative to the growth rate of species k. Under these no-
tations, the following four distinguishable cases were often considered:

(a) tii > tji and tij < tjj

(b) tii < tji and tij < tjj

(c) tii > tji and tij > tjj

(d) tii < tji and tij > tjj

Some of these conditions, for instance (b), are known to hide an help-
ful supplementary condition (underlining by Renshaw in [33]) that is
the product of the within species inhibitory growth rates equals the
product of the between-species inhibitory growth rates, i.e.,

tiitjj = tijtji. (5)

Under only this additional condition (5), the system (4) can be rewrit-
ten in the following form

ẋi = xi[ri − sii(xi + qxj)]

ẋj = xj[rj − sji(xi + qxj)]
(6)
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where the constant q (q = sij/sii = sjj/sji) can describe the population
of species j make smaller demands on available resources when q < 1
and otherwise q > 1. From this system (6), three distinguishable
biological behaviors are shown in [33] for any initial condition (x0i, x0j):

• If Kii > Kjj, then lim
t→+∞

xj(t) = 0, i.e, the species i wins the
competition.

• If Kii < Kjj, then lim
t→+∞

xi(t) = 0, i.e, the species j wins the
competition.

• If Kii = Kjj, then neither lim
t→+∞

xj(t) = 0 nor lim
t→+∞

xi(t) = 0, i.e,
the two species coexist.

Moreover, it stated in [3] that:

• if case (a) holds then the two species coexist;

• if case (b) holds then species i wins the competition;

• if case (c) holds then species j wins the competition;

• if case (d) holds the species i or j wins the competition with basin
of attraction separated by the stable manifold of the coexistence
equilibrium.

Throughout this work, the condition (5) is called "balanced intra-
interspecific competition effects" condition as well as when it is not
considered the term "balanced" is replaced by the word "unbalanced".
So, there are two distinct "unbalanced intra-interspecific competition
effects" conditions:

tiitjj > tijtji, (7)
and

tiitjj < tijtji. (8)
According to expressions of competitive effects relatively to growth
rate, notice that when Z > 0, the difference between rk and r′k is
displayed in the conditions (5), (7) and (8) as well as in the cases (a),
(b), (c) and (d). In addition, two species Lotka-Volterra competition
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model (4) and its Mac-Arthur Model [14] equivalent form that suppose
unrestrained resource accessibility for each species:

ẋi = r′iZxi(1− tiixi − tijxj)

ẋj = r′jZxj(1− tjixi − tjjxj),
(9)

have the same conclusions ( see e.g [3, 4]).
In the further pursuit of theoretical and numerical studies of the model
(2), we consider the definitions, the relations and the notations in-
troduced in this current subsection. Moreover, we will use, for con-
venience, the abbreviations (LAS) for Locally Asymptotically Stable
equilibria (U) for Unstable equilibria and (GAS) for Globally Asymp-
totically Stable equilibria in all the following.

3.2 General properties of the model
In this subsection, we consider unavailable and available of the limiting
resource conditions to study the general properties of the model (2).

Theorem 3.1.
If Z = 0 then the system (2) admits an unique equilibrium point E0 =
(0, 0) which is globally asymptotically stable. Else, for any Z > 0 the
extinction equilibrium E0 = (0, 0) is a repeller point of the system (2).

Proof.
First, if Z = 0 then E0 = (0, 0) is the only equilibrium point of the
system (2). To show its global asymptotic stability, let
V : R2

+ −→ R+ the lyapunov function defined by
V (xi, xj) = xi + xj. V is obviously C1(R2

+) and satisfies the following
conditions:
V (0, 0) = 0, ∀ (xi, xj) 6= (0, 0),
V (xi, xj) > 0, V̇ (xi, xj) = ẋi + ẋj < 0 and
V (xi, xj) −→∞ as ‖(xi, xj)‖ −→ ∞.
Thus, by Barbashin & Krasovskii [34], the origin is globally asymptot-
ically stable for the system (2).
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Second, let’s suppose Z > 0, then the Jacobian Matrix of the sys-
tem (2) at any point (xi, xj) ∈ Ω is

J(xi, xj) =

j1(xi, xj) j3(xi, xj)

j4(xi, xj) j2(xi, xj)

 (10)

where j1(xi, xj) = riZ

1 + xj
− 2siixi − sijxj,

j3(xi, xj) = − riZxi
(1 + xj)2 − sijxi,

j4(xi, xj) = − rjZxj
(1 + xi)2 − sjixj and

j2(xi, xj) = rjZ

1 + xi
− 2sjjxj − sjixi.

Particularly, the Jacobian matrix (10) at E0 has two positive eigen-
values riZ > 0 and rjZ > 0. Therefore, E0 is an unstable and repeller
point for the system (2).

Remark 3.1.
The results of the theorem 3.1 corresponds to two species extinction
scenario in the absence of resource (Z = 0) while the presence (Z > 0)
of accessible limiting resource leads to competitive exclusion principle
or coexistence of two species outcome.

Now, since the asymptotic behavior of the model is summarized in
theorem 3.1 when Z = 0, it is then supposed throughout in the rest of
this paper that two species live both at the beginning of the experiment
and consume permanent limiting resource (Z > 0) thereafter.

Lemma 3.1.
Let Z > 0 and Ks = max

k,l∈{i,j}

{
rkZ

skl

}
. Then the set:

Ωs = {(xi, xj) ∈ R2
+; xi + xj ≤ Ks}

is a global attractor for the system (2).
Moreover, the extinction Equilibrium E0 = (0, 0), the exclusion of one
species equilibria Ei = (Kii, 0) and Ej = (0, Kjj) exist and lie all in Ωs
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Proof.
It’s obvious that Ωs is a compact set and invariant for the system (2)
by the main ideas developed in the proof of the Theorem 2.1. Thus, it
remains to show that Ωs attracts any neighboring trajectory starting
in Ω. Let P = (xi, xj) ∈ Ω so that
xi + xj > Ks, i.e, 1− xi + xj

Ks

< 0. Therefore, from the inequalities

dxi
dt
≤ riZxi

(
1− xi

Kii

− xj
Kij

)

≤ riZxi

(
1− xi + xj

Ks

)
< 0

and similarly for xj, it results
dxi
dt

+ dxj
dt

< 0.
By setting ẋi = 0 and xj = 0, we have
xi = riZ

sii
, i.e, Ei is an equilibrium point for (2). This completes the

proof.
Lemma 3.2.
There is no periodic orbit for the system (2) lying entirely in the
interior of Ω.
Proof.
Consider for any point P = (xi, xj) in the interior of the bounded set
Ω, the functions
B(xi, xj) = 1

xixj
and

f(xi, xj) =


riZ

(
1

1 + xj

)
xi − siix2

i − sijxixj,

rjZ
( 1

1 + xi

)
xj − sjjx2

j − sjixixj

 .
Then, by calculation, one obtains the divergence of Bf :

div(Bf(xi, xj)) = −
(
sii
xj

+ sjj
xi

)
< 0.

Hence, by Lemma 3.1 and Dulac criteria (see [35]), there can be no
closed orbit entirely in the interior of Ω. This ends the proof.
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The above Lemma 3.2 will be used in the proof of our global asymp-
totic stability result of exclusion or coexistence equilibrium.

3.3 Coexistence equilibrium point
It’s obvious that a so called equilibrium of coexistence E∗ = (x∗i , x∗j)
(x∗i > 0 and x∗j > 0) of the system (2) satisfies the following system of
equations 

riZ

1 + x∗j
− siix∗i − sijx∗j = 0,

rjZ

1 + x∗i
− sjjx∗j − sjix∗i = 0.

(11)

Then, after little algebra from (11), a useful necessary condition for
being a coexistence equilibrium E∗ states in the following Lemma.

Lemma 3.3.
Let Z > 0. If E∗ = (x∗i , x∗j) is a coexistence equilibrium then these
coordinates (x∗i , x∗j) satisfy the following set of equations:

a4(x∗i )4 + a3(x∗i )3 + a2(x∗i )2 + a1x
∗
i + a0 = 0 , (12)

a′4(x∗j)4 + a′3(x∗j)3 + a′2(x∗j)2 + a′1x
∗
j + a′0 = 0 , (13)

where

• a4 = sjiαc, a′4 = −sijαc
with αc = siisjj − sjisij,

• a3 = (2sji − sjj)αc, a′3 = −(2sij − sii)αc

• a2 = eiZ + (−2sjj − r′jZ + sji)αc,
a′2 = e′iZ − (−2sii − r′iZ + sij)αc
where ei = s2

jjr
′
i + sjisijr

′
j > 0 and

e′i = s2
iir
′
j + sijsjir

′
i > 0,

• a1 = eiZ − (sjj + r′jZ)αc + diZ,
a′1 = e′iZ + (sii + r′iZ)αc + d′iZ
where di = sijr

′
j
2Zci

and d′i = sjir
′
i
2Zcj
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• a0 = sijr
′
j
2(Zci

− Z)Z,
a′0 = sjir

′
i
2(Zcj

− Z)Z

with Zci
= sii
r′i

(
tii
tji
− 1

)
and

Zcj
= sjj

r′j

(
tjj
tij
− 1

)
.

Proof. see Appendix A
Remark 3.2.
Since the polynomial coefficients a4 and a′4 are opposite sign as well as
a3 and a′3 do, the study of the corresponding Polynomial’s roots may
be equivalent.

For analytical pursuit of coexistence equilibrium studies, the system
(11) can be rewritten as

0 = xi(φi(xi)− fi(xj))

0 = xj(φj(xj)− fj(xi))
(14)

where for k, l ∈ {i, j} φk(τ) = rk

(
1− τ

Kkk

)
,

fk(τ) = rk

(
1− 1

1 + τ
+ τ

Kkl

)
with rk = r′kZ, ∀k 6= l.
In the system (14), φk : [0; +∞[→] − ∞; rk] is continuous, straight
line, decreasing and invertible function satisfying
φk(0) = rk, φk(Kkk) = 0, φk(τ) ≥ 0 iff τ ≤ Kkk and ∀α ≤ rk, φ

−1
k (α) =

Kkk

(
1− α

rk

)
.

Moreover, fk : [0,+∞[→ [0,+∞[ is continuous, increasing, con-
cave
(f ′′k (τ) < 0, ∀τ ≥ 0) and invertible function. Therefore, the system
(14) becomes 

xi = gi(xj)

xi = gj(xj)
(15)
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where

gi = φ−1
i ◦ fi : [0, xmax

j ]→ [0, Kii] and
gj = f−1

j ◦ φj : [0, Kjj]→ [0, rj]
(16)

are both convex, strictly decreasing and continuous functions.
The properties of these functions (16) will be useful in the study of
coexistence equilibrium point. For instance, it will be used in the proof
of the following lemma which gives upper bounds of E∗’s coordinates.

Lemma 3.4.
Let Z > 0. A necessary condition for E∗ = (x∗i , x∗j) being a coexistence
equilibrium of the system (2) is that (x∗i , x∗j) ∈]0,min(Kii, x

max
i )[×]0,min(Kjj, x

max
j )[

where

xmax
i =

−1 +
√

1 + 4Kji

2 (17)

and

xmax
j =

−1 +
√

1 + 4Kij

2 . (18)

Proof.
Let Z > 0. Since gi is continuous, strictly decreasing and gi(0)gi(K) <
0, there exists an unique
xmax
j ∈]0, K[ solution of gi(τ) = 0, equivalently,
fi(xmax

j ) = ri. By solving this last equation, one can obtain:

xmax
j =

−1 +
√

1 + 4Kij

2

and thereafter gi : [0, xmax
j ]→ [0, Kii] is invertible since φi : [0, Kii]→

[0, ri] is positive and invertible. But, the coordinates of a coexistence
equilibrium E∗ = (x∗i , x∗j) must be the solution of (15), i.e, x∗i = gi(x∗j)
with x∗i > 0 and
x∗j > 0. Therefore, since gi : [0; xmax

j ]→ [0;Kii] is invertible, it results
that
x∗j = g−1

i (x∗i ) ∈]0,min(Kjj, x
max
j )[.

In the same manner, we obtain
x∗i ∈]0,min(Kii, x

max
i )[. This complete this proof.

104



As it’s well known, an intersection of nullclines curves in the interior
of the domain Ω represents a coexistence equilibrium existence and one
species exclusion equilibrium Ei or Ej is represented by the intersection
point between a nullclines curves (11) and (xi−axis) or (xj−axis), the
nullclines properties give typical situations as it is depicted in Figure
1 and Figure 2.

Figure 1: (a) and (b): none coexistence steady state, (c) and (d):
one coexistence steady state E∗ according to resource and competition
effects.

Figure 2: (e) and (f): one coexistence equilibrium E∗, (g) and (h);:
two coexistence equilibria E∗ and E∗∗ according to resource and com-
petition effects.
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3.4 Local asymptotic stability of equilibria
In this subsection, we study the local stability of model (2) equilibria.

3.4.1 Exclusion of one species equilibria

Proposition 3.1.
Let Z > 0. If tii ≤ tji then Ei is LAS. Else, the following assertions
holds:

(i) If t2ii ≥ tji(tii + s

r
K) then Ei is unstable;

(ii) If t2ii < tji(tii + s

r
K) then there exists Zci

> 0 so that Ei is LAS
for the system (2) if
Z ≥ Zci

else Ei is unstable.

Moreover, when Ei is unstable it holds that

• its unstable subspace:

(Eu
i ) : xj = β(Z)xi + λi2 − λi1

sij(Kij+1)

where β(Z) = − λi2 − λi1
sij(Kij + 1)Kii

< 0, cross the domain Ω

• and its stable subspace (Es
i ) is the (xi − axis).

Proof.
Let Z > 0. Note that first, the eigenvalues of Jacobian matrix at Ei
Appendix (B.36) are
λi1 = −riZ < 0 and λi2 = sjiriKii

sii(1 +Kii)
(Zci
− Z). So, v = xi(1, 0) is a

eigenvector associate to
λi1 < 0. It follows (xi − axis) is the stable subspace of the exclusion
equilibrium Ei.
For the eigenvalue λi2, if tii ≤ tji then λi2 < 0. This implies Ei is LAS
for the system (2). Else, i.e, tii > tji (Zci

> 0), one can be pursuit the
following additional hypotheses.
(i) If t2ii ≥ tji(tii + s

r
K) then λi2 > 0. By H. Grobman Theorem
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[39], Ei is then unstable for the system (2). Moreover, it’s clear that
λi2 > 0 provides the equation (Eu

i ) of the subspace unstable associated
to λi2 > 0.
(ii) It’s obvious that if t2ii < tji(tii + s

r
K) then It remains the case

Z = Zci
> 0 to conclude for the hypothesis (ii).

Now, suppose that Z = Zci
> 0. This implies λi2 = 0. By setting

xi = xi − Kii and xj = xj, it’s clear that the origin is a equilibrium
point of the following system:

dxi
dt

=
(

riZ

1 + xj

)
(xi +Kii)

−sii(xi +Kii)2 − sij(xi +Kii)xj,
dxj
dt

=
(

rjZ

1 + xi +Kii

)
xj − sjjx2

j

−sji(xi +Kii)xj.

(19)

From the jacobian matrix Appendix (B.39) of system (19) at origin, we
give the two eigenvectors vi = (1, 0), vj = (−γ, 1), and the following
matrix

P−1 =
(

1 γ
0 1

)
. (20)

Setting (
X
Y

)
= P−1

(
xi
xj

)
, (21)

with γ = sij
sii

(Kij + 1), we obtain:


Ẋ = −2riZX − siiX2 + ψ1Y + ψ2Y
2

+ψ3XY − siiK2
ii + riZ(Kii +X − γY )

1 + Y

+ rjZγY

1 +Kii +X − γY

Ẏ = −sjiKiiY + (sjiγ − sjj)Y 2 − sjiXY

+ rjZY

1 +Kii +X − γY
.

(22)
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where X − γY = xi ≥ 0,
ψ1 = (2siiγ − sij − sjiγ)Kii, ψ2 = (sij − sii − sjj)γ,
ψ3 = 2siiγ−sij−sjiγ. This system (22) can be rewritten in this useful
form:

V̇ = AV +Q(V ) + o(||(X, Y )||)

with V =
(
X
Y

)
, Q(V ) =

(
F (V )
G(V )

)
where

A =
(
−riZ ψ1

0 −sjiKii

)
,

G(X, Y ) = (sjiγ − sjj)Y 2 − sjiXY
and

F (X, Y ) =− siiX2 + ψ2Y
2 + ψ3XY

with Q(0, 0) = (0, 0) and JQ(0, 0) =
(

0 0
0 0

)
where JQ denotes the

jacobian matrix of Q Appendix (B.37).
Thus, since the matrix A has negatives eigenvalues then Ei is LAS for
the system (2). This ends the proof.

Remark 3.3.
Changing i and j roles in Proposition. 3.1, it can be obtain similarly
results for the exclusion equilibrium state Ej as a corollary.

These results will be useful for proving the global asymptotic sta-
bility of equilibria in section 4.

3.4.2 Coexistence equilibrium E∗

Let Z > 0 so that a coexistence equilibrium point E∗ exists, it derives
that the trace and the determinant of the Jacobian matrix of the system
(2) at E∗ (see Appendix (B.38)) can be expressed as

Trace(J(E∗)) = −(siix∗i + sjjx
∗
j) < 0. (23)

and
det(J(E∗)) =

x∗ix
∗
j(1 + x∗i + x∗j)

(1 + x∗i )(1 + x∗j)

[
αc − αz(E∗)

]
(24)
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respectively, where
αc = r′ir

′
j(tiitjj − tijtji) (25)

and
αz(E∗) =

f(x∗i , x∗j)
1 + x∗i + x∗j

(26)

with
f(x∗i , x∗j) = 2siisji(x∗i )2 + 2sjjsij(x∗j)2

+ sji(sii + sij)x∗i + sij(sjj + sji)x∗j + 4sijsjix∗ix∗j .
These expressions (23), (24), (25) and (26) obviously allow to give
the behavior of the system (2) neighborhood of E∗ in the following
Proposition.

Proposition 3.2. (Coexistence of species)
Let Z > 0 so that a coexistence equilibrium point E∗ exists. Then, the
following assertions hold for the system (2).

(i) If αc ≤ 0 then E∗ is unstable.

(ii) For any αc > 0, if αz(E∗) < αc then E∗ is LAS. Else, if αz(E∗) =
αc then E∗ is stable, else E∗ is unstable.

(iii) if E∗ is unstable then it admits a stable
manifold lying in the interior of Ω.

For simplicity, we will use the notations of conditions given in table
2 in the following sections.

Table 2: Notations of some Hypotheses.

Notations Conditions
Bi tii ≤ tji

Bj tjj ≤ tij

Ai t2ii < tji(tii + s

r
K)

Aj t2jj < tij(tjj + s

r
K)

Ẑ max
k∈{i,j}

{Zck
}

Ž min
k∈{i,j}

{Zck
}
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4 Asymptotic Behaviors: Resource Based
Model Outcome

In this section, we consider that Z > 0 and determine the local and
global asymptotic stability of system (2) equilibria that exists. For this
purpose, we will use the following auxiliary function
g : [0,min(Kjj, x

max
j )]→ R defined by

g(x) = gi(x)− gj(x). (27)

4.1 Balanced intra-inter specific competition ef-
fects

In this subsection, we assume that the condition (5) is satisfied, i.e.,
tiitjj = tijtji. This condition is equivalent to αc = 0 (cf. (25)) and
implies that the condition Bi is equivalent to Bj. In addition, the
system (11) becomes

a2(x∗i )2 + a1x
∗
i + a0 = 0 ,

rjZ

sjj(1 + x∗i )
− sji
sjj
x∗i = x∗j ,

(28)

where a2 = eiZ > 0, a1 = (ei + di)Z and
a0 = sijr

2
j (Zci

− Z)Z with di = sijr
2
jZci

.

Therefore, the x∗i -Equation in (28) admits at most one positive root
given by

x∗i =
−a1 +

√
a2

1 − 4a2a0

2a2
if only if a0 < 0.

This equivalence will be useful in the proof of following theorems.

Theorem 4.1.
Suppose that the conditions Bi and Ai are satisfied. Then for the sys-
tem (2), there exists a bifurcation value Ẑ > 0 of the resource Z such
that:

(i) for any Z > Ẑ, there exists a unique coexistence equilibrium E∗

which is unstable with the stable manifold is in interior of Ω and
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the two exclusion of one species equilibria Ei and Ej are both
LAS.

(ii) for any Z ≤ Ẑ, there is no coexistence equilibrium, Ei is unstable
and Ej is LAS.

Proof.
Let Bi and Ai are satisfied. Notice that from Bi we have Zci

> 0 and
Bj. Furthermore, Ai implies Zci

< Zmax.
(i) Suppose that Z > Zci

. This means a0 < 0, then there exists at most
one E∗.
From Bi and (27) it holds that
g(0) = Kii − xmax

i > 0. But, by calculation, we have both g(xmax
j ) =

−gj(xmax
j ) < 0 and Bj implies that xmax

j ≤ Kjj. In addition, according
to g : [0;xmax

j ]→ R is continuous, there exists x∗j ∈]0, xmax
j [ such that

g(x∗j) = 0 when Z > Zci
. Thus, E∗ exists and is unique. The results

in Lemma 3.3 and 3.4 complete the proof of this assertion (i).
(ii) If Z ≤ Zci

then a0 ≥ 0. Therefore, there exists no coexistence
equilibrium E∗ in Ω. This complete the proof.

Therefore, from local asymptotic stability of equilibria states of sys-
tem (2) summarized in tables 3 to 6, it holds that balanced competition
effects condition gives the CEP.

Table 3: Existence and local stability of steady states according to Bi,
Bj, Ai, Ẑ and Ž are defined in the table 2.

Conditions Ei Ej E∗

BiAi(Z < Ẑ) U LAS
BiAi(Z = Ẑ) LAS LAS
BiAi(Z > Ẑ) LAS LAS U
BiAi U LAS
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Table 4: Existence and local stability of steady states according to Bi,
Bj, Ai, Ẑ and Ž are defined in the table 2.

Conditions Ei Ej E∗

BjAi(Z < Ẑ) U LAS
BjAi(Z = Ẑ) LAS LAS
BjAi(Z > Ẑ) LAS LAS U
BjAi U LAS

Table 5: Existence and local stability of steady states according to Bi,
Bj, Aj, Ẑ and Ž are defined in table 2.

Conditions Ei Ej E∗

BiAj(Z < Ẑ) LAS U
BiAj(Z = Ẑ) LAS LAS
BiAj(Z > Ẑ) LAS LAS U
BiAj LAS U

Table 6: Existence and local stability of steady states according to Bi,
Bj, Aj, Ẑ and Ž are defined in table 2.

Conditions Ei Ej E∗

BjAj(Z < Ẑ) LAS U
BjAj(Z = Ẑ) LAS LAS
BjAj(Z > Ẑ) LAS LAS U
BjAj LAS U

Lemma 4.1.
Suppose that 1

2sjj < sij satisfying sjj 6= sij. Then W s(Ei)\{Ei} ⊂
R2\Ω where W s(Ei) denotes the stable manifold at Ei.
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Proof.
To determine the stable manifold from Taylor expansion of the system
(19), we consider:
xj = h(xi) where
h(xi) = Q3(xi) + o(x4

i ), with Q3(xi) = ax2
i + bx3

i .

Thus, from Q′3(xi) =2axi + 3bx2
i

f(xi, Q3(xi)) = riZ

1 + ax2
i + bx3

i

(xi +Kii)

− sii(xi +Kii)2

− sij(xi +Kii)(ax2
i + bx3

i ),

g(xi, Q3(xi)) = rjZ

1 + xi +Kii

(ax2
i + bx3

i )

− sjj(ax2
i + bx3

i )2

− sji(xi +Kii)(ax2
i + bx3

i ),

the manifold invariance:

Q′3(xi)f(xi, Q3(xi)) = g(xi, Q3(xi)),

and the hypothesis sjj ∈]0, 2sij[\{sij}, it consecutively holds −3sijb3 =
−3sjjb3,
b3(sjj − sij) = 0 =⇒ b = 0
and a2(sjja− 2sija− 2sijKii) = 0
=⇒ a = 2sijKii

sjj − 2sij
< 0. Thereafter, we obtain the stable manifold at

Ei:
(W s(Ei)) : xj = ax2

i (a < 0)
is outside of Ω\{Ei} when sjj ∈]0, 2sij[\{sij}. This ends the proof.

Theorem 4.2. (CEP)
Suppose Bi, Ai and the assumption of Lemma 4.1 holds. Then there
exists a bifurcation value Ž > 0 such that:

(i) for any Z < Ž, Ej is GAS in Ω\(xi − axis) for the system (2);

(ii) for any Z ≥ Ž, the coexistence equilibrium E∗ is unstable and the
two exclusion equilibria Ei and Ej are both LAS for the system
(2).
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Proof.
(i) Let x0 = (x0i, x0j) be an initial condition inside of Ω. The orbit
θ+(x0) is positively bounded, since the domain Ω is positively invariant.
Thanks to the Poincaré-Bendixson type trichotomy [36], the ω− limit
of x0 contains either:
i1) an equilibrium point or
i2) an closed orbit or
i3) an equilibrium point and a homoclinic orbit of that point or a chain
of unstable points.
If Bi, Ai and Z < Zci

then the system (2) admits three hyperbolic
points E0, Ei and Ej.
In one hand, applying the Lemma 3.2, it follows that the system has
no periodical orbit. The statement i2) is not then satisfied.

Otherwise, the Lemma 4.1 according
ω(x0) 6= {Ei}. Indeed, Ei is a hyperbolic point thus, by Theorem
(Butler-McGehee) in [38] there exists z 6= Ei such as z ∈ ω(x0) which
is absurd because ω(x0) ⊂ Ω. It yields that Ei is not admissible to be
a ω − limit set of an initial condition belonging to Ω. In other terms,
there is no chain of equilibrium points and Ei has no homoclinic orbit.
Besides ,Ej has no homoclinic orbit since it is LAS. The statement i3)
is not satisfied. Consequently ω(x0) = {Ej}.

We have shown that the ω − limit set of x0 contains only Ej equi-
librium which is attractive. We conclude that Ej equilibrium is GAS
in
Ω\(xi − axis) for the system (2).

The statement i2) has been verified in the Proof of the Proposition
3.2. This completes this proof.

Remark 4.1.
Under balanced competition effects condition, only the CEP is valid
for the model (2) in two ways. Indeed, in lowest levels of resource, a
exclusion of a species holds when its intra-specific competition effects is
greater than its inter-specific competition effects on the other competing
species. In sufficient level of resource, the exclusion of one species
depend on two species initial densities.
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4.2 Unbalanced intra-inter specific competition ef-
fects

Throughout this subsection, we assume that tiitjj − tijtji > 0, this
is equivalent to αc > 0 (cf. (25)). Then, the density x∗i of species
i at a coexistence equilibrium (when it exists) satisfies the equation
P (x∗i ) = 0 where

P (x∗i ) = αc(x∗i )4 + a3(x∗i )3 + a2(x∗i )2 + a1x
∗
i + a0

Theorem 4.3.
Suppose Bi, Bj, Ai and Aj holds. Then for the system (2) there ex-
ist two bifurcation values, Ž and Ẑ, of the resource Z that are both
positives such that:

(i) for any Z ≤ Ž or Z ≥ Ẑ, the system (2) admits a unique coex-
istence equilibrium in interior of Ω.

(ii) for any Ž < Z < Ẑ, the system (2) admits at most two coexis-
tence equilibria in the interior of Ω.

Moreover, the local asymptotic behavior of E∗ or E∗∗ is given by as-
sertion (ii) in Proposition 3.2.

Proof.
Notice that from Bi and Bj, we have Zci

and Zcj
are both positive.

Furthermore, Ai and Aj implies Zci
< Zmax and Zcj

< Zmax respec-
tively.
(i) Suppose that Z < Ž. This means

Kkk < xmax
k , ∀k ∈ {i, j} which implies:

g(0) = gi(0) − gj(0) = Kii − xmax
i < 0. But, g(Kjj) = gi(Kjj) −

gj(Kjj) = gi(Kjj) > 0.
Then, from g : [0, Kjj] −→ R is continuous so that g(0)g(Kjj) < 0,
there exists x∗j ∈]0, Kjj[ such as g(x∗j) = 0. Consider x∗′

j ∈]x∗j , Kjj[
such as g(x∗′

j ) = 0. Then, there exists ε > 0 so that g(x∗′
j − ε) > 0 and

g(x∗′
j + ε) < 0. Therefore, by the intermediate value theorem, there

exists x∗′′
j ∈]x∗′

j + ε,Kjj[ satisfying g(xj) = 0. So, from a0/a4 > 0, the
polynomial P (x) (12) admits fourth positive roots. Using Descartes
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criteria (see Appendix C), this obvious contradicts sign of P (x) coeffi-
cients when Z < Ž. Thus, the system (2) admits an unique equilibrium
when Z < Ž.

In the same manner, contradiction of P ′(x) (13) coefficients sign
holds for any Z > Ẑ.
Thus E∗ exists and is unique for the system (2) for Z < Ž or Z > Ẑ.
The results in lemma 3.3 and lemma 3.4 complete this proof of asser-
tion (i).
(ii) Without loss generality, set Ž = Zci

and suppose that Zci
< Z <

Zcj
. This means

xmax
j −Kjj < 0 and xmax

i −Kii > 0.
By calculation, g(0) = Kii − xmax

i < 0 and g(xmax
j ) = −gj(xmax

j ) < 0.
If for any
γ ∈]0;xmax

j [ g(γ) < 0, then there is no coexistence equilibrium for the
system (2). Else, suppose that there exists γ0 ∈]0;xmax

j [ /g(γ0) = 0
and g(γ) < 0, ∀ γ 6= γ0. Then, the system (2) admits a unique co-
existence equilibrium. Finally, when it exists γ1 ∈]0;xmax

j [ so that
g(γ1) > 0. Applying twice the intermediate value theorem, there exist
two points x∗j ∈]0, γ1[ and x∗∗j ∈]γ1, x

max
j [ solutions of g(τ) = 0. Com-

bining the necessary conditions in Lemma 3.3, relations between roots
and Descartes criteria (see Appendix C) it follows that only E∗ and
E∗∗ exist for the system (2). This completes the proof of assertion
(ii).

Therefore, the conclusions on local asymptotic stability of equilib-
ria of system (2) when unbalanced competition effects hypotheses is
supposed, are summarized in tables 7 to 11.
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Table 7: Existence and local stability of steady states according to
Bi, Ai, Ž = Zcj

and Ẑ = Zci
which are defined in the table 2 when

αc < αz(E∗) and αc < αz(E∗∗).

Conditions Ei Ej E∗ E∗∗

Bi(Ž < 0 < Z < Ẑ) U LAS
BiAi(Ž < 0 < Ẑ ≤ Z) LAS LAS U
Bi(0 < Z < Ž) U U U
Bi(0 < Z = Ž) U LAS U
BiAi(0 < Ž < Z < Ẑ) U LAS U U

Table 8: Existence and local stability of steady states according to Bi,
Ai, Ž = Zcj

and Ẑ = Zci
which are defined in table 2 when αc > αz(E∗)

and αc > αz(E∗∗).

Conditions Ei Ej E∗ E∗∗

Bi(Ž < 0 < Z < Ẑ) U LAS
BiAi(Ž < 0 < Ẑ ≤ Z) LAS LAS LAS
Bi(0 < Z < Ž) U U LAS
Bi(0 < Z = Ž) U LAS LAS
BiAi(0 < Ž < Z < Ẑ) U LAS LAS LAS

117



Table 9: Existence and local stability of steady states according to
conditions Bj, Aj, Ž = Zci

and Ẑ = Zcj
which are defined in table 2

αc < αz(E∗) and αc < αz(E∗∗).

Conditions Ei Ej E∗ E∗∗

Bj(Ž < 0 < Z < Ẑ) LAS U
BjAj(Ž < 0 < Ẑ ≤ Z) LAS LAS U
Bj(0 < Z < Ž) U U U
Bj(Z = Ž > 0) LAS U U
BjAj(0 < Ž < Z < Ẑ) LAS U U U
BjAj(Ž < 0 < Z) LAS U

Table 10: Existence and local stability of steady states according to
Bj, Aj, Ž = Zci

and Ẑ = Zcj
which are defined in table 2 αc > αz(E∗)

and αc > αz(E∗∗).

Conditions Ei Ej E∗ E∗∗

Bj(Ž < 0 < Z < Ẑ) LAS U
BjAj(Ž < 0 < Ẑ ≤ Z) LAS LAS LAS
Bj(0 < Z < Ž) U U LAS
Bj(Z = Ž > 0) LAS U LAS
BjAj(0 < Ž < Z < Ẑ) LAS U LAS LAS
BjAj(Ž < 0 < Z) LAS U
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Table 11: Existence and local stability of steady states according to
Bj, Aj, Ž = Zci

and Ẑ = Zcj
are defined in table 2 αc < αz(E∗) and

αc > αz(E∗∗).

Conditions Ei Ej E∗ E∗∗

Bj(Ž < 0 < Z < Ẑ) LAS U
BjAj(Ž < 0 < Ẑ ≤ Z) LAS LAS U
Bj(0 < Z < Ž) U U U
Bj(Z = Ž > 0) LAS U U
BjAj(0 < Ž < Z < Ẑ) LAS U U LAS
BjAj(Ž < 0 < Z) LAS U

The following theorem gives a result on global asymptotic stability
of the coexistence equilibrium.
Theorem 4.4. (Paradox of phytoplankton)
Suppose Bi, Bj,

1
2sll < slk ∀l 6= k ∈ {i, j} and Z < Ž are satisfied.

Then there exists a bifurcation value αc such that:
(i) for any αz(E∗) < αc, the unique coexistence equilibrium E∗ is

GAS in Ω\(xi − axis) ∪ (xj − axis) for the system (2).

(ii) for any αz(E∗) > αc, although the coexistence equilibrium point
is unstable, the system (2) is persistent.

Proof.
Suppose Bi, Bj and Z < Ž then the exclusion equilibria are unstable.
Furthermore,
1
2sll < slk, ∀l 6= k ∈ {i, j} implies that the stable manifold at each
exclusion equilibrium satisfies W s(Ek)\{Ek} ⊂ R2\Ω.

(i) In same manner that we shown in the Proof of Theorem 4.2 the
ω − limit set of any initial condition x0 contains only E∗ equilibrium
which is attractive. We conclude that E∗ equilibrium is GAS in Ω\(xi−
axis) ∪ (xj − axis) for the system (2).
The statement of (ii) has been verified in the proof of the Proposition
3.2.
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5 Numerical simulations
In this section, we present some numerical simulations of the model
(2) that collaborate the theoretical results obtained in the previous
sections. They concern numeric solutions of equations derived from
the model (2) by using the software Matlab R2015a. The parameters
values defined in the table Tab.12 and those satisfying conditions and
hypotheses are used to show graphical results.

Table 12: some parameters and their values.

Parameters ri rj K

Values 0.04 0.03 1000

Figure 3: Illustration of the attraction basins of Ei (yellow color) and
Ej (grey color) separated by the stable manifold of E∗ (W s(E∗) ⊂ Ω)
corresponding to the case that Ei and Ej are LAS when E∗ is unstable
for the model (2) with the parameters values αc = 0, sii = 1

3 , sjj = 1
2 ,

sij = 1
3 , sji = 1

2 , Z = 200 and those in the table 12.
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Figure 4: Illustration of the unique coexistence equilibrium is unstable
under Balanced competition effects condition (αc = 0) when tjj ≤ tij
and tii > tji by plotting the function Z 7→ αZ(E∗) (blue color)and
αc (red color) for Z > Ẑ with the same parameters values which give
Figure 3.

Figure 5: Populations xi and xj trajectories from initial conditions:
(xi0, xj0) = (0.2, 0.2) ; (0.4, 0.4); (0.16, 0.16); (0.55, 0.55); (0.35, 0.35)
for αc = 0 with parameters values given in Figure 3 and the resource
Z = 1 for (a), (b) and Z = 6 for (c), (d).
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Figure 6: Populations xi and xj trajectories satisfying balanced compe-
tition effects (αc = 0) and the resource Z = 11 for (e), (f) and Z = 16
for (g),(h) with the same parameters values and initial conditions given
in Figure 5.

Using the routine fsolve of Matlab in the programAbasinMacArthur2.m
(available under request from the authors), the Figure 3 shows the
attraction basin of each exclusion equilibrium point when condition
of Balanced competition effects (αc = 0) is satisfied with Z = 200,
tii = 8.3333 > tji = 16.6667, tjj = 16.6667 > tij = 8.3333. These
values provide Zci

= −4.1667 < 0, Ẑ = Zcj
= 16.6667 as critic value

of resource and the estimations of E∗ = (1.3609, 3.7218), Ei = (24, 0)
and
Ej = (0, 12) as unique coexistence, exclusion of species j and exclusion
of species i equilibrium points respectively. It can be seen in this figure
(Figure 3) that the attraction basin of Ei = (24, 0) (yellow color) and
the attraction basin of
Ej = (0, 12) (grey color) are separated here by a surface (white color)
of neither stable nor attractive points instead of the intending curve of
the stable manifold at E∗. Clearly, this indicates that the system (2)
converge towards to one exclusion equilibrium point as time goes to
infinity according to the initial condition. In addition, for these same
parameters values, it can be seen in Figure 4 that the graph of the
function
Z 7−→ αZ (26) for Z > 16.6667 is above the graph of the func-
tion Z 7−→ αc = 0 i.e the Z-axis. This confirms that the coexis-
tence equilibrium E∗ = (x∗i (Z), x∗j(Z)) point exits and is unstable for
Z > 16.6667. Also, as it’s depicted in Figure 5 and Figure 6, the sys-
tem (2) converges to Ej for many values of the resource Z satisfying
Z < Ẑ. Therefore, this confirms the model (2) suggests the CEP when
the two species in competition for a common resource satisfy the bal-
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anced intra-inter specific competition effects condition as it states in
Theorem 4.2.

Considering the case of unbalanced intra-inter specific competition
effects when αc = 106940 > 0 so that tii = 350.0000 > tji = 116.6667,
tjj = 333.3333 > tij = 83.3333. For Z = 800, we obtain Ei =
(2.2857, 0), Ej = (0, 2.4),
Ž = Zci

= 70 and Ẑ = Zcj
= 1000 by calculation and the numeric

resolution of equations (11) gives the existence of the two coexistence
equilibrium points estimated by E∗ = (1.7345, 0.2706) and
E∗∗ = (1.2857, 0.6000). From putting these approximate coordinates of
each coexistence equilibrium point in equation (26), it derives αZ(E∗) =
146.0917 < αc and
αZ(E∗∗) = 113.3157 < αc. The evaluations at a long term in time
towards infinity of the solution of equations (2) from any initial con-
dition x0 ∈ Ωs with Ks = 9.8 falling in a small neighborhood of an
equilibrium point are in Figure 7.

Figure 7: Illustration of the species i exclusion by the attraction basins
of Ej (yelow), E∗ (black) and E∗∗ (orange) with the parameters values
sii = 14, sjj = 10, sij = 10

3 , sji = 7
2 , those in Table. 12 and for resource

Z = 800. It indicates that Ej, E∗ and E∗∗ are LAS and Ei (white color
neighborhood) is unstable according to initial conditions x0 ∈ Ωs with
Ks = 8.9.

It can be seen only the attraction basins of equilibria Ej = (0, 2.4),
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E∗ = (1.7345, 0.2706) and
E∗∗ = (1.2857, 0.6000) as it is depicted in Figure 8. This shows
that Ei = (2.2857, 0) is unstable as well as Ej = (0, 2.4), E∗ =
(1.7345, 0.2706) and
E∗∗ = (1.2857, 0.6000) are LAS. For
Z = 1500 > Ẑ, we obtain in the same manner that Ei = (4.2857, 0),
Ej = (0, 4.5) and
E∗ = (0.7822, 2.2511) are LAS as it’s depicted in Figure 8 so that
αZ(E∗) = 155.8808 < αc.

Figure 8: Illustration of the tri-stability of the system (2) concerning
Ei, Ej and the unique coexistence equilibrium E∗, obtained with same
values parameters given in figure 7 and the resource value Z = 1500.
It shows species exclusion or coexistence according the initial x0 ∈ Ωs

with Ks = 18 .

Considering the case of unbalanced competition effects when tii =
300.0000 > tji = 100.0000 and tjj = 233.3333 > tij = 58.3333, that
provide αc = 6.4167e + 04, Ž = Zci

= 600 and Ẑ = Zcj
= 700.

For Z = 500 < Ž, it’s obtained that Ei = (1.6667, 0) and Ej =
(0, 2.1429) are unstable and the unique coexistence equilibrium point
E∗ = (0.5627, 1.1301) is LAS according to its attraction basin in Figure
9.
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Figure 9: Illustration of assertion (i) of the Theorem 4.4 when the two
exclusion equilibria Ei and Ej are unstable and the unique coexistence
equilibrium point E∗ is LAS, obtained with the parameters values sii =
12, sjj = 7, sij = 7

3 ,
sji = 3 and the resource value Z = 500. It shows species coexistence
according the initial x0 ∈ Ωs with Ks = 8.9.

(a) (b)

Figure 10: (a): Functions (Z 7−→ x∗i (Z) + x∗j(Z)) and (Z 7−→
x∗∗i (Z) + x∗∗j (Z)) graphs showing the existence of zero, one or two
coexistence equilibrium points. (b) Graphic comparison of functions
Z 7−→ αZ(E∗) (26) and Z 7−→ αZ(E∗∗) (26) relatively to Z 7−→ αc > 0
given the existence of two coexistence equilibrium points with one is
LAS and the other is unstable if Z ∈]Ž; Ẑ[=]600; 700[ and. also an
unique coexistence equilibrium point which is unstable if Z ∈]0; 600[
and is LAS when Z ∈]700 + ε; 2000[(ε > 0).
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Figure 11: Illustration of the persistence of system (2) when any equi-
librium point (Ei, Ej and E∗) is unstable with parameters values
sii = 1, sjj = 0.5, sij = 1

3 , sji = 1
2 , the resource Z = 10 and the

initial conditions (0.2, 0.1);(1.4, 1); (1.8, 1.8);(2, 2.1);(2.9, 2.5).

From the same parameters values with Z varying, it is depicted
in Figure 10 (a) the graphs of both functions (Z 7−→ ||E∗(Z)||1 =
x∗i (Z) + x∗j(Z) and Z 7−→ ||E∗∗(Z)||1 = x∗∗i (Z) + x∗∗j (Z)) that show
the existence of zero, one or two coexistence equilibrium points. It can
be seen in Figure 10 (b) the different positions between the graphs
of the functions Z 7−→ αZ(E∗) (26) and Z 7−→ αZ(E∗∗) (26) for
Z > 0 relatively to Z 7−→ αc > 0 that characterize the stability or
the instability of coexistence equilibria points in the intervals ]0; Ž[,
]Ž; Ẑ[ and ]Ẑ;Zmax[. These numeric results clearly indicate combina-
tion of statements in Proposition 3.2 and Theorem 4.3 as bifurcation
diagrams. Considering the case of unbalanced competition effects when
tii = 25.0000, tij = 83.3333,
tjj = 16.6667, tji = 16.6667 implies
0 < αc = 0.333 < αZ = 1.3028, Ei = (0.4, 0), Ej = (0, 0.6), E∗ =
(0.2416, 0.2416) and
Zmax = 83333, Ž = Zci

= 12.5000,
Z = 10 < Zci

Ẑ = Zcj
= 16.6667, then Ei, Ej and E∗ are unstable.This

shows persistence species.

6 conclusion
In this work, we have proposed and analyzed a new planar ordinary
differential equations system as an extension of classical Lotka-Volterra
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competition model. This concerned the resource effects on two species
coexistence or the exclusion of one of them when a permanent regime
of resource availability and a density dependent resource acquirement
for species are supposed. The mathematical analysis proved that the
key factor of the competition outcome is the relation between intra
and inter specific interference effects and sometimes the resource level
importance. Indeed, it’s shown that the Lotka-Volterra-Mac-Arthur
competition model can derived as a limit of the built model. The well
known conclusions on Lotka-Volterra-Mac-Arthur competition model
according to usual conditions (a)-(d) (see for instance diagne. et al) are
not resource level dependent. Thereafter, inspired by Lotka-Volterra
underlining by Renshaw in [33], we introduced the hypotheses of bal-
anced (5) and unbalanced (7)-(8) intra interspecific inferences from
formulas that describe intra and inter specific competition effects be-
tween species relatively their rate of growth or rate of unit resource
consummation growth.

The general analysis suggested the extinction of two species when
there is non resource Z in the system. Conversely, when the resource
is permanent Z > 0, it provided uniqueness and positivity of solution,
a global attractor, properties that characterize a coexistence equilib-
rium point, the non existence of limit cycle by Dulac criteria and the
LAS of exclusion and coexistence equilibria by Hartmann Grobman,
local manifolds and center manifold theorems for the system (2). In
addition, we proved that the CEP holds when two species satisfy the
Balanced competition effects hypothesis whenever when it states the
unbalanced competition effects condition, the model (2) goes to the
CEP or the coexistence of species states according to the level of re-
source. In both conditions, it was exhibited that equilibrium points of
the model (2) are all unstable. The Poincare-Bendixson Theorem [36]
combined to model (2) obtained here properties is used to show one
exclusion of species equilibrium GAS and coexistence of species equi-
librium GAS.

The modifications of the classic prey-predator model of Lotka pro-
posed in [31] as well as the epidemiological models proposed in [37]
with polynomial factors can also be applied for this model.
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Numerical simulations were perform to prove their congruence to
theoretical results. In addition, it was established that the model can
go to coexistence of species when equilibria are theoretically all unsta-
ble.

Finally, the presented model can be view as an important step to-
wards a more thorough understanding of relationships between interfer-
ence of species, resource dynamics and competition outcomes. Future
work should include biogeography and variations of inference effects ac-
cording to accessible resource dynamics that lead to a switched system
or concerns resource ratio-based theory.

7 Appendices

A Proofs
Lemma 3.3.
From the system (11), one can have the following system of equations:

siix
∗
i (1 + x∗j) = r′iZ − sijx∗j(1 + x∗j) (A.29)

x∗j =
r′jZ − sjix∗i (1 + x∗i )

sjj(1 + x∗i )
. (A.30)

From putting (A.30) in (A.29) and setting
π = r′jZ − sjix

∗
i (1 + x∗i ) and ζ = sjj(1 + x∗i ), it holds the following

equation:

ζ2ri =(ζ + π)(ζsiix∗i + sijπ)
=π2 + siix

∗
i ζ

2 + (siix∗i + sii)ζπ. (A.31)
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Therefore, from the following little algebra calculations of equation
(A.31) terms

sijπ
2 =sij

(
r2
j + s2

ji(x∗i )2(1 + x∗i )2

− 2rjsjix∗i (1 + x∗i )
)

=r2
jsij − 2rjsijsjix∗i + sijs

2
ji(x∗i )4

+ sijsji(sji − 2rj)(x∗i )2 + 2sijs2
ji(x∗i )3,

siix
∗
i ζ

2 =siix∗i
(
s2
jj + 2s2

jjx
∗
i + s2

jj(x∗i )2
)

=siis2
jjx
∗
i + 2siis2

jj(x∗i )2 + siis
2
jj(x∗i )3,

ζ2ri =ris2
jj + 2ris2

jjx
∗
i + ris

2
jj(x∗i )2,

Π =(siix∗i + sij)ζπ

=(siix∗i + sij)
(
rjsjj + sjj(rj − sji)x∗i

− 2sjjsji(x∗i )2 − sjjsji(x∗i )3
)

=rjsijsjj + sjj(rj(sij + sii)− sijsji)x∗i
+ sjj

(
rj(sii − sji(sii + 2sij)

)
(x∗i )2

+ sjjsji(sij − 2sii)(x∗i )3 − siisjjsji(x∗i )4,

with rk = r′kZ (k = i, j), it derives the coefficients of the polynomial
(12)
a4 = sjiαc with αc = siisjj − sjisij,
a3 = (2sji − sjj)αc,
a2 = eiZ + (−2sjj − r′jZ + sji)αc where
ei = s2

jjr
′
i + sjisijr

′
j > 0,

a1 = eiZ − (sjj + r′jZ)αc + diZ where

di = sijr
′
j
2Zci

, with Zci
= sii
r′i

(
tii
tji
− 1

)
.

a0 = sjir
′
j
2(Zci

− Z)Z.
By analogy, one can obtain the polynomial coefficients:
a′4 = −sijαc
a′3 = −(2sij − sii)αc,
a′2 = e′iZ − (−2sii − r′iZ + s′j)αc where
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e′i = s2
iir
′
j + sijsjir

′
i > 0,

a′1 = e′iZ + (sii + r′iZ)αc + d′iZ where

d′i = sjir
′
i
2Zcj

, with Zcj
= sjj

r′j

(
tjj
tij
− 1

)
.

and a′0 = sijr
′
i
2(Zcj

− Z)Z.

Statement (iv) of Proposition 3.2.
Let αc > 0. Suppose αc = αZ(E∗), this means det(J(E∗) = 0.
Without loss generality, set the eigenvalues are λi1 = −(siix∗i + sjjx

∗
j)

and λi2 = 0 associated respectively at eigenvectors:
v1 = (θ1, 1)′ and respectively v2 = (1, θ2)′.
where
θ1 =

x∗i (siix∗i + sijx
∗
j + sij(1 + x∗j))

sjjx∗j(1 + x∗j)
and

θ2 = −
sjjx

∗
j + sjix

∗
i + sji(1 + x∗i )

sjj(1 + x∗i )
.

Let:

P =
(
θ1 1
1 θ2

)
thus P−1 = 1

1− θ1θ2

(
−θ2 1

1 −θ1

)
by change (

xi
xj

)
= P

(
x
y

)
(A.32)

we have (
ẋ
ẏ

)
= P−1

(
ẋi
ẋj

)
. (A.33)

which is equivalent to
ẋ = 1

1− θ1θ2
(ẋj − θ2ẋi)

ẏ = 1
1− θ1θ2

(ẋi − θ1ẋj).

(A.34)

130




ẋ = ε11x

2 + ε12y
2 + F (x, y)

1− θ1θ2
+ o(||(x, y)||)

ẏ = ε21x
2 − ε22y

2 +G(x, y)
1− θ1θ2

+ o(||(x, y)||)

(A.35)

where
ε11 = −sjj + θ1(−sji + siiθ1θ2 + sijθ2),
ε21 = θ1(−siiθ1 + sji − sjj + sjiθ1),
ε12 = θ2(−sjjθ2 − sji + sii + sijθ2),
ε22 = (sii + θ2(sij − sjjθ1θ2 − sjiθ1)),

F (x, y) =[(2siiθ1 + sijθ1θ2 + sij)θ2 − sjiθ1θ2

− sji − 2sjjθ2]xy

and

G(x, y) =[(sjiθ1θ2 + sji + 2sjjθ2)θ1 − sijθ1θ2

− sij − 2siiθ1]xy

With F (0R2) = G(0R2) = 0R2 ,

JQ(0, 0) =
(

0 0
0 0

)
where JQ denotes the jacobian Matrix of Q(x, y) =(

F (x, y)
G(x, y)

)
; furthermore, there exists δ > 0,

r ≥ 1 and a function h ∈ Cr(Nδ(0)) that defines locally the center
manifold and satisfies

h(0) = 0 and Dh(0) = 0.

So, y = h(x) = o(x2) in [39]. As Ec =< v2 > is tangent to the center
manifold at origin, then:

W c(0) = Ec with v2 = (1, θ2)′ .

Thus E∗ is stable for the system (2).
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B Jacobian Matrix
–at exclusion equilibrium Ei:

J(Ei) =


−riZ −Kiisij(Kij + 1)

0 rjZ

1 +Kii

− sjiKii

 (B.36)

The Jacobian Matrix of Q obtained form (22) is

JQ(X, Y ) =

−2siiX + ψY σ1Y + ψX

−sij4Y σ2Y − sjiX

 (B.37)

where σ1 = 2γ(sij − sii − sjj),
ψ = 2siiγ − sij − sji and σ2 = 2(sjiγ − sjj).
–at coexistence equilibrium E∗:

J(E∗) =

 −siix∗i Σ1(x∗, y∗)

Σ2(x∗, y∗) −sjjx∗j

 (B.38)

where Σ1(x∗, y∗) = −x∗i
(
siix

∗
i + sijx

∗
j

1 + x∗j
+ sij

)
and

Σ2(x∗, y∗) = −x∗j
(
sjjx

∗
j + sjix

∗
i

1 + x∗i
+ sji

)
.

-at (x′i, xj) where x′i = xi −Kii:

J(x′i, xj) =

j1(x′i, xj) j2(x′i, xj)

j3(x′i, xj) j4(x′i, xj)

 (B.39)

j1(x′i, xj) = −riZ
1 + xj

− 2(x′i +Kii)− sijxj,

j2(x′i, xj) = −riZ
(1 + xj)2 − sij(x

′
i +Kii),

j3(x′i, xj) = −rjZxj
(1 + x′i +Kii)2 − sjixj,
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j4(x′i, xj) = rjZ

1 + x′i +Kii

− 2sjjxj − sji(x′i +Kii).
In particular, when Z = Zci

the jacobian Matrix (B.39) at x′i = 0 and
xj = 0 is as form:

J(0, 0) =
(
−riZ −Kii(riZ + sij)

0 0

)
(B.40)

C Descartes critera
Theorem C.1. [40]
Consider Pn(x) = anx

n + an−1x
n−1 + ...+ a0 with an 6= 0 a polynomial

and ν the number of sign changes of the coefficients {ai}(i∈N). Then
the k number of real positive zero of Pn is equal or less than nu by
(ν − k) is the even number.
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