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Abstract

Schistosomiasis, a health challenge in many communities, is preva-
lent as the rate of infection is one in every thirty individuals. In this
work, a deterministic model for schistosomiasis transmission dynamics
is studied. The stability properties of equilibrium states, disease-free
and endemic equilibria are established in terms of the basic reproduc-
tion number, R0. The sensitivity analysis of R0 with respect to the
model parameters is carried out using Partial rank correlation coef-
ficients (PRCCs). The optimal control model with control measures,
public health education, diagnosis and treatment and snail control,
is formulated and its optimality system is derived using Pontragyin’s
maximum Principle. Simulation results showed that simultaneous im-
plementation of public health education, diagnosis and treatment and
snail control will reduce the burden of the schistosomiasis infection
in the population. However due to toxicity of some snail controls to
other aquatic bodies and difficulty to single out the chemical con-
trol that will focus only on the snail population even though snails
are special food in Africa, it is preferable to implement public health
education and diagnosis and treatment simultaneously in order to
eradicate schistosomiasis transmission in the affected regions.
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1 Introduction

Schistosomiasis is a public health challenge in many countries as the
rate of infection is one in every thirty individuals seen [5]. This makes its
control a challenging task in areas where the infection is endemic. There
are two stages of the disease; acute and chronic stages [15]. The acute stage
is prevalent among persons who are exposed to fresh water in endemic re-
gions while chronic stage occurs as a result of continuous deposition of the
parasite eggs in the body of those who had acute infection [5]. The preven-
tion that is put in place for schistosomiasis control focuses on expanding
the use of mass administration of praziquantel, an anti schistosomal drug,
to minimize infection-induced sickness which reduces infection rate among
school-age children and adults in high-risk populations [2].

Although, mass drug administration is determined by schistosomiasis
prevalence in affected communities, re-infection can occur even after prazi-
quantel is administered [15] because treatment cannot eliminate the disease
as the recovery rate only changes the speed of approaching equilibrium and
in the mean time prevalence can be reduced [20]. There are concerns that
repeated usage of praziquantel could lead to a situation where the body
develop resistance to the effectiveness of the drug [3]. According to King
et al. [30], schistosoma transmission can be reduced if snail control strate-
gies will be implemented properly and this would complement strategies
of modern day mass drug delivery programs, resulting in much improved
prevention of infection and re-infection of schistosomiasis.

Several mathematical models on schistosomiasis have been studied and
recommendations were made arising from the results of the models. Guiro
et al. [1] observed through the use of threshold analysis that public en-
lightenment campaign has a positive impact on controlling schistosomia-
sis. Diaby et al. [16] considered snail competition for the disease control.
Ishikawa et al. [17] predicted that among various possible control measures
on the effective elimination of schistosoma, there is little probability of the
resurgence of an epidemic, Chen et al. [18] proposed that environmental
factors should be included in the control and eradication of schistosomiasis
while Gao et al. [7] and Dida et al. [6] observed that the use of mollusci-
cides as snail control would be the most effective control measure to curtail
schistosomiasis transmission. Furthermore, Abokwara and Madubueze [25]
considered the impact of public health education and snail control while
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Kanyi et al. [8] discussed the optimal control of schistosomiasis with early
treatment, snail elimination, and chlorination of the water body as control
measures.

From the aforementioned authors, it is only Kanyi et al. [8] that stud-
ied optimal control of schisotomiasis. Application of optimal control to
schisotomiasis disease provides information on how the implementation of
control measures minimize schisotomiasis transmission in an endemic pop-
ulation. Therefore, this research would consider the optimal control impact
of public health education, snail control using molluscicides and early treat-
ment on schistosomaisis transmission which is an extension of Abokwara
and Madubueze [25] and Kanyi et al. [8]. Abokwara and Madubueze [25]
did not consider the treatment of chronic stage of the disease and optimal
control and sensitivity analysis of their model. For Kanyi et al. [8], the
public health education impact and chronic stage of the disease and sensi-
tivity analysis were not examined. The public health eduction is considered
based on the result of Abokwara and Madubueze [25] and Sacolo et al. [22]
that enlightening members of the society about schistosomiasis infection
will help to reduce the burden of the disease.

The work will involve carrying out qualitative analysis and sensitivity
analysis of the model parameters to identify the most influential parame-
ter(s) to be targeted for intervention strategies. With the results of sen-
sitivity analysis, an optimal control model will be formulated for effective
decision making in controlling the spread of schisotosomiasis.

The rest of this paper consists model formulation in Section II, model
analysis in Section III, Section IV is the optimal control analysis with Sec-
tion V as the numerical simulation and discussion while conclusion is Sec-
tion VI.

2 Model formulation

The model comprises two host populations, the human population and
the snail population, the miracidia, M(t) and the cercaria, P (t) at any time,
t. The human population is subdivided into susceptible human population,
SH(t), acute infected human population, I1H(t), chronic infected human
population, I2H(t), treatment compartment, TH(t). Individuals in the hu-
man population moves from one class to another as their status changes
and the disease evolves. The infection occurs when the susceptible human
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have contact with fresh water that has free living larva called cercariae. The
susceptible individuals, SH(t) progress to I1H(t) as a result of infection at
a rate, λH , where λH = β1P

P0+εP , with P0, β1 and ε defined in [12]. The
acute infected human, I1H progresses to Chronic stage when treatment is
not given early or completed and this result to continue deposition of the
parasite eggs that are trapped in the host (human) tissues [5].

The treatment class, TH(t), constitutes of infected humans, I1H(t) and
I2H(t), undergoing treatment at respective rates, σ1 and σ2 and they can not
shed the eggs due to their treatment. They recover and become susceptible
again at a rate, e. The infected humans, I1H(t) and I2H(t), contribute
to the life cycle of the schistosoma as they shed eggs when they come to
swim or fetch water from river at rates, NEγ1 and NEγ1α respectively.
These eggs find their way into fresh water supply and hatch into a free
swimming ciliated larva called miracidium and this constitute the miracidia
population, M(t).

For the snail population, it is subdivided into susceptible snail pop-
ulation, SS(t) and infected snail population, IS(t) at any time, t. The
susceptible snail comes in contact with miracidia at the rate, λS , where
λS = β2M

M0+εM with β2, and ε, and M0 defined in [12]. The infected snails
release a free living larva called cercariae, P (t). There is no direct transmis-
sion of the disease between human and snail population [15]. Furthermore,
disease induced death, δ2H for I2H(t), is assumed to be greater than disease
induced death in δ1H for I1H(t), climate variation do not affect the contact
patterns and reproduction does not take place in IS class as a result of
infection. The descriptions of the parameters of the model and the model
systematic diagram are presented in Table 1 and Figure 1 respectively.

With the Table 1 and Figure 1, we have the under listed differential
equations as follows

dSH
dt = ΛH + eTH − λHSH − µHSH
dI1H
dt = λHSH − (k + δ1H + σ1 + µH)I1H

dI2H
dt = kI1H − (σ2 + µH + δ2H)I2H

dTH
dt = σ1I1H + σ2I2H − eTH − µHTH
dM
dt = NEγ1(I1H + αI2H)− µMM
dSS
dt = ΛS − λSSS − µSSS − d1SS
dIS
dt = λSSS − (µS + d1 + δS)IS
dP
dt = γ2IS − µPP


(1)
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Figure 1: Schematic diagram of the Schistosomiasis disease

Table 1: Parameter descriptions and values

Parameter Epidemiological Interpretation Baseline(Range) Sources

ΛH Recruitment rate for human population 254(−) [25]

ΛS Recruitment rate for snail population 3000(−) [12]

k Progression rate from I1H to I2H 0.0262(0.02− 0.03) [25]

δ1H Disease induced death for I1H 2.74(2− 90)× 10−4 [12]

δ2H Disease induced death for I2H 9.13((80− 100)× 10−4 [25]

e Re-susceptibility rate from TH to SH 6.87(5− 7)× 10−4 [14]

µH Natural death rate for human population 4.379× 10−4(−) [12]

µS Natural death rate for snail population 0.000569(−) [12]

µM Natural death rate for M 0.9(0.6− 0.95) [12]

µP Natural death rate for P 4(3− 6)× 10−3 [12]

P0 Half saturation constant of cercariae 9× 107(−) [12]

δS Disease induced death for snail population 4.012(3.5− 45)× 10−4 [14]

M0 Half saturation constant of Miracidia 1× 108(-) [12]

ε Growth velocity limitation of P and M 0.2 [12]

β1 Transmission rate for human population 0.09753(0.07− 0.12) [25]

β2 Transmission rate for snail population 0.616(0.5− 0.8) [12]

α Influential shedding rate for I2H 1.01(0.5− 1.5) [25]

γ1 Shedding rate for I1H 6.96(6.0− 7.5) [25]

γ2 Shedding rate for IS 2.6(2.0− 3.5) [12]

d1 Predation rate for snail population 0.01(−) Assumed

NE Number of eggs secreted by humans 300(250− 350) [12]

σ1 Treatment rate for I1H 0.05(0.04− 0.06) [25]

σ2 Treatment rate for I2H 0.03(0.02− 0.04) [25]
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subject to initial conditions SH(0) > 0, I1H(0) ≥ 0, I2H(0) ≥ 0, M(0) ≥ 0,
SS(0) > 0, IS(0) ≥ 0 and P (0) ≥ 0 with λH = β1P

P0+εP , λS = β2M
M0+εM . The

model parameters are assumed to be positive.

3 Model Analysis

3.1 Invariant region and positivity of the solutions

Let NH(t) = SH(t) + I1H(t) + I2H(t) +TH(t) and NS(t) = SS(t) + IS(t)
be total human and snail populations at any time, t with initial conditions
NH(0) = NH0 and NS(0) = NS0. We state the following lemma.

Lemma 1 (Invariant region). All feasible solutions of system (1) are uni-
formly bounded in a proper subset D = DH × DS × DM × DP with non-
negative initial conditions where DH = {(SH , I1H , I2H , TH)ε<4

+ : NH(t) ≤
ΛH
µH
}, DS =

{
(SS , IS)ε<2

+ : NS(t) ≤ ΛS
µS+d1

}
, DP =

{
P ≤ ΛSγ2)

(µS+d1)µP

}
and

DM =
{
M ≤ ΛHγ1NE(1+α)

µHµM

}
are the subsets for human population, snail

population, cercariae and miracidia respectively.

Proof. We have from the total human population that dNH
dt ≤ ΛH−µHNH .

Applying Birkhoff and Rota Theorem [31] on differential inequality and
integrating with initial condition, NH(0), we have

NH ≤
ΛH
µH
−
[(ΛH − µHNH(0))

µH

]
e−µH t.

As t→∞, the population size, NH approaches NH ≤ ΛH
µH
.

For the Miracidia population, we have from the fifth equation of model
equation (1) that

dM

dt
= NEγ1I1H +NEγ1αI2H − µMM.

But, I1H ≤ NH(t) and I2H ≤ NH(t), so that

dM

dt
≤ γ1NE(1 + α)NH(t)− µMM.

With NH ≤ ΛH
µH
, we have

dM

dt
≤ γ1NE(1 + α)

ΛH
µH
− µMM.
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Applying the theorem in [31] with initial conditions, M(0) yields

M ≤ ΛHγ1NE(1 + α)

µMµH
−
[ΛHγ1NE(1 + α)

µMµH
−M(0)

]
e−µM t.

As t→∞, the population size, M(t) ≤ ΛHγ1NE(1+α)
µMµH

.

For the snail population with initial condition, NS(0), dNS
dt ≤ ΛS−(µS+

d1)NS so that

NS ≤
ΛS

(µS + d1)
−
[ΛS − (µS + d1)NS(0)

(µS + d1)

]
e−(µS+d1)t.

As t→∞, the population size, NS ≤ ΛS
(µS+d1) .

Furthermore for cercariae concentration P (t) of the eighth equation of
model equation (1) with IS ≤ NS ≤ ΛS

(µS+d1) , we have

dP

dt
≤ γ2ΛS

(µS + d1)
− µP .

With the theorem in [31] and initial conditions, P (0), we get

P ≤ ΛSγ2

(µS + d1)µP
−
[ ΛSγ2

(µS + d1)µP
− P (0)

]
e−µP t.

As t→∞, P (t) ≤ ΛSγ2
(µS+d1)µP

.

Hence, the feasible solutions of model (1) will enter the positive invariant
region D = DH ×DS ×DM ×DP . This completes the proof.

Theorem 1 (Positivity of solutions). The solutions of system (1),SH , I1H ,
I2H , TH , M , SS, IS, P with non-negative initial data are non-negative for
all time, t > 0.

Proof. Let τ = sup{t > 0 : SH(0) > 0, I1H(0) > 0, I2H > 0, TH >
0,M(0) > 0, SS(0) > 0, IS(0) > 0, P (0) > 0} ∈ [0, t].

From the first equation of (1), we have

dSH
dt

= ΛH + eTH − λHSH − µHSH ≥ −(λH + µH)SH .

Using integrating factor method with initial condition, SH(0), it yields

SH(t) ≥ SH(0) exp
{
−
∫ t

0
(λH(τ) + µH)dτ

}
> 0.
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Hence, SH is always positive for t > 0.
In similar way for t > 0, I1H > 0, I2H > 0, TH > 0, M > 0, SS > 0,

IS > 0, P > 0. Therefore, the solutions (SH(t), I1H(t), I2H(t), TH ,M(t),
SS(t), IS(t), P (t)) of model equation (1) are non-negative for t > 0. This
implies that the model is well posed and make biological meaning so it is
possible to carry out mathematical analysis of the model.

3.2 Existence of the disease-free equilibrium state and basic re-
production number, R0

The disease-free equilibrium state, E0, is an equilibrium state where
there is no infection. It is given by

E0 = (S0
H , I

0
1H , I

0
2H , T

0
H ,M

0, S0
S , I

0
S , P

0) =

(
ΛH
µH

, 0, 0, 0, 0,
ΛS

µS + d1
, 0, 0

)
.

(2)
The basic reproduction number, R0, is the number of new cases repro-
duced in a wholly susceptible population when an infective individual is
introduced into the population [10].

Applying the next generation matrix method [10], let F(x) be the rate
of new infections and V(x) be the rate of transition by any other means
with x = (I1H , I2H , TH ,M, IS , P, SH , SS). The model equation (1) can be
written as

dx

dt
= F(x)− V(x)

where

F =



β1PSH
P0+εP

0

0

0
β2MSS
M0+εM

0

0

0


, V =



fI1H

−kI1H + gI2H

−σ1I1H − σ2I2H + hTT

−NEγ1(I1H + αI2H) + µMM

qIS

−γ2IS + µPP

−ΛH − eTH + β1PSH
P0+εP + µHSH

−ΛS + β2MSS
M0+εM + µSSS


,
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where

f = k + σ1 + δ1H + µH ,

g = µH + σ2 + δ2H ,

n = µS + d1,

h = e+ µH ,

q = n+ δS . (3)

Taking the derivatives of F and V at E0 give the Jacobian matrices, F
and V , as follows

F =



0 0 0 0 0
S0
Hβ1
P0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0
S0
Sβ2
M0

0 0

0 0 0 0 0 0


,

V =



f 0 0 0 0 0
−k g 0 0 0 0
−σ1 −σ2 h 0 0 0
−NEγ1 −NEγ1α 0 µM 0 0

0 0 0 0 q 0
0 0 0 0 −γ2 µP

 .

The eigenvalues of matrix FV −1 are

0, 0, 0, 0,±

√
S0
HS

0
Sβ2β1γ2γ1NE(αk + g)

M0P0µMµP fgq
.

With the definition of basic reproduction number, R0, as the maximum
positive eigenvalue of FV −1, we have

R0 =

√
S0
HS

0
Sβ2β1γ2γ1NE(αk + g)

M0P0µMµP fgq
=
√
R0S(R0HA +R0HC) (4)

where R0S =
S0
Sβ2γ2
qP0µP

, R0HA =
S0
Hβ1γ1NE

fM0µM
, R0HC =

S0
Hβ1γ1NEαk
fgM0µM

. Here,
R0S , R0HA, R0HC are the reproduction numbers for the snail and miracidia
interaction, acute infected human and cercariae interaction, and chronic
infected human and cercariae interaction respectively.
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3.2.1 Stability of the disease-free equilibrium state

Theorem 2. If E0 is the DFE of the model, then E0 is locally asymptoti-
cally stable if R0 < 1, but unstable if R0 > 1.

Proof. This is done by linearizing equation (1) at DFE, E0 to give a Jaco-
bian matrix, J(E0) as

−µH 0 0 e 0 0 0 −S0
Hβ1
P0

0 −f 0 0 0 0 0
S0
Hβ1
P0

0 k −g 0 0 0 0 0
0 σ1 σ2 −h 0 0 0 0
0 NEγ1 NEγ1α 0 −µM 0 0 0

0 0 0 0 −S0
Sβ2
M0

−n 0 0

0 0 0 0
S0
Sβ2
M0

0 −q 0

0 0 0 0 0 0 γ2 −µP


. (5)

The eigenvalues of the Jacobian matrix, J(E0) are −µH ,−h,−n and the
roots of the following characteristic equation

λ5 +A1λ
4 +A2λ

3 +A3λ
2 +A4λ+A5 = 0 (6)

where

A1 = f + µM + g + q + µP ,

A2 = f(g + q + µM + µP ) + g(q + µM + µP ) + q(µM + hµP ) + µPµM ,

A3 = fg(q + µM + µP ) + q(f + g)(µP + µM ) + µPµM (f + g + q),

A4 = fgq(µP + µM ) + gµMµP (q + f) + fqµMµP (1−R0SR0HA),

A5 = fgqµMµP (1−R2
0).

Using [4], the roots of the polynomial (6) have negative real part solutions
if A1, A2, A3, A4, A5 are positive which is true if R0 < 1. This means that
the Jacobian matrix (5) has negative eigenvalues whenever R0 < 1. Hence,
the DFE, E0 is locally asymptotically stable if R0 < 1. However when the
R0 > 1, A5 < 0. This implies that positive eigenvalue exists as such means
that the DFE, E0 is unstable if R0 > 1.
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3.3 Existence and stability of the endemic equilibrium state

Endemic equilibrium state, Ee, is the state where the infected state
variables are not equal to zero. At equilibrium state, dSH

dt = 0, dI1Hdt =

0, dI2Hdt = 0, dMdt = 0, dSS
dt = 0, dISdt = 0, dPdt = 0. Solving for non-zero infected

state variables at equilibrium state gives the endemic equilibrium state,
Ee = (SeH , I

e
1H , I

e
2H , T

e
H ,M

e, SeS , I
e
S , P

e) where

SeH =
ΛH(nM0µMµHfghε(R

2
0−1)+A+Eβ1µMM0n)

µH(nM0µM (ER2
0β1+µHfghε(R

2
0−1))+A)

,

Ie1H =
ΛHβ1µMM0ghn(R2

0−1)

nM0µM (ER2
0β1+µHfghε(R

2
0−1))+A

,

Ie2H =
kΛHβ1µMM0hn(R2

0−1)

nM0µM (ER2
0β1+µHfghε(R

2
0−1))+A

,

T eH =
ΛHβ1µMM0n(gσ1+kσ2)(R2

0−1)

nM0µM (ER2
0β1+µHfghε(R

2
0−1))+A

,

M e =
NEγ1ΛHβ1M0hn(g+αk)(R2

0−1)

nM0(ER2
0β1+µHfghε(R

2
0−1))+A

,

SeS = fghM0µHµM (P0µP +ΛSγ2ε)+B
γ2(nM0β1µME+A) ,

IeS =
fghnP0M0µPµHµM (R2

0−1)
γ2(nM0β1µME+A) ,

P e =
fghnqP0M0µPµHµM (R2

0−1)
qµP (nM0β1µME+A) .


with

A = M0εµHµMfghn+ hNEγ1β1ΛH(kα+ g)(nε+ β2),

E = fgh− e(kσ2 + gσ1) > 0,

B = ΛSγ2(hNEγ1β1ΛH(kα+ g) +M0β1µME).

The endemic equilibrium state, Ee, exists whenever R0 > 1.

3.3.1 Bifurcation Analysis

A dynamical system is said to exhibit bifurcation when its parameter
value changes and causes a sudden qualitative change in its behaviour [29].
Bifurcation can be forward or backward. When a bifurcation is forward,
it implies that the disease-free equilibrium and endemic equilibrium state
are locally asymptotically stable if R0 < 1 and R0 > 1 respectively while
in backward bifurcation, a coexistence of the disease-free equilibrium and
endemic equilibrium states occur even when R0 < 1. This implies that
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when R0 < 1 in the presence of control measures, it is not enough to
control the spread of schistosomiasis. Thus, there may be need for more
control measures that would make the bifurcation to be forward.

The bifurcation analysis is carried out using the Centre Manifold Theory
by [19] that involves choosing a bifurcation parameter.

We state the Centre Manifold Theory as follows.

Theorem 3 (Centre Manifold Theory [19]). Consider the following general
system of ordinary differential equation with parameter φ. dxdt = f(x, φ), f :
<n × < −→ < and fεC2(<n × <). When 0 is an equilibrium point of the
system (that is, f(0, φ) ≡ 0 for all φ) and it implies that

i. N = Dxf(0, 0) = ∂fi
∂xj

(0, 0) is the linearization matrix of the system

around the equilibrium 0 with φ evaluated at 0.

ii. Zero is a simple eigenvalue of N and other eigenvalues of N have
negative real parts.

iii. Matrix N has right eigenvector z and a left eigenvector p correspond-
ing to the zero eigenvalue.

Let fk be the kth component of f and

r =
n∑

k,i,j=1

pkzizj
∂2fk
∂xi∂xj

(0, 0),

s =

n∑
k,i=1

pkzi
∂2fk
∂xi∂φ

(0, 0).

The local dynamics of the system around the equilibrium point 0, is totally
determined by the signs of r and r.

i. r > 0 and s > 0. When φ < 0 with |φ| � 1, 0 is locally asymptotically
stable, and there exist a positive unstable equilibrium; when 0 < |φ| �
1, 0, 0 is unstable and there exist a negative and locally asymptotically
stable equilibrium.

ii. If r < 0 and s < 0, when φ < 0 with |φ| � 1, 0 unstable; when
0 < |φ| � 1, asymptotically stable, and there exist a positive unstable
equilibrium.
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iii. If r > 0 and s < 0, when φ < 0 with |φ| � 1, 0 unstable; and
there exists a locally asymptotically stable negative equilibrium; when
0 < |φ| � 1,0 is stable and a positive unstable equilibrium appears.

iv. If r < 0 and s > 0, when φ changes from negative to positive, 0
changes its stability from stable to unstable. Correspondingly to a
negative unstable equilibrium becomes positive and locally asymptoti-
cally stable.

Particularly, if r > 0 and s > 0, backward bifurcation occurs at φ = 0 and
a forward bifurcation occurs if r < 0 and s > 0.

Let β∗1 be the bifurcation parameter at R0 = 1 and it is obtained by
solving for β1 at R0 = 1 that is√

S0
HS

0
Sβ2β1γ2γ1NE(αk + g)

M0P0µMµP fgq
= 1.

This leads to

β∗1 = β1 =
fgqnµHµMµPM0P0

ΛSΛHβ2γ1γ2NE(g + αk)
.

At R0 = 1, the eigenvalues of the Jacobian matrix, J(E0) of equation (6)
has simple zero eigenvalue and negative eigenvalues using Routh-Hurwitz
criteria and [4].

Let zis = (z1, z2, z3, z4, z5, z6, z7, z8), pis = (p1, p2, p3, p4, p5, p6, p7, p8)
be the right and left eigenvectors. The right eigenvalues zis are determined
by multiplying the Jacobian matrix, J(E0) with zis and equate to zero.
This is given as

z1 = − E

ghµH
z2, z3 =

k

g
z2, z4 =

gσ1 + kσ2

gh
z2,

z5 =
P0M0fqµP
β1β2S0

HS
0
Sγ2

z2, z6 = − P0fqµP
nβ1S0

Hγ2
z2,

z7 =
fµPP0

γ2β1S0
H

z2, z8 =
fP0

β1S0
H

z2, z2 = z2 > 0,

where E = fgh− e(gσ1 + kσ2) > 0.
For the eigenvector pis, we transpose the Jacobian matrix and multiply

with pis which is equate to zero to yield
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p1 = 0, p3 =
γ1γ2NEαβ1β2S

0
HS

0
S

P0M0gqµMµP
p2, p4 = 0,

p5 =
γ2β1β2S

0
HS

0
S

P0M0qµPµM
p2, p6 = 0,

p7 =
β1S

0
Hγ2

P0hµP
p2, p8 =

β1S
0
H

P0µP
p2, p2 = p2 > 0.

Let SH = x1, I1H = x2, I2H = x3, TH = x4,M = x5, SS = x6, IS = x7,
P = x8. The functions

f2 =
β1x8x1

P0 + εx8
− fx2, f7 =

β2x5x6

M0 + εx5
− qx7

give non-zero partial derivative(s) at DFE, E0 as

∂2f2(E0)

∂x1∂x8
=
β1

P0
,

∂2f2(E0)

∂x2
8

= −
2εS0

Hβ1

P 2
0

,

∂2f7(E0)

∂x5∂x6
=

β2

M0
,

∂2f7(E0)

∂x2
5

= −
2εS0

Sβ2

M2
0

.

Using the theorem in [19], the bifurcation coefficient, r, is given by

r = p2

[
z1z8

∂2f2(E0)

∂x1∂x8
+ z2

8

∂2f2(E0)

∂x2
8

]
+ p7

[
z5z6

∂2f7(E0)

∂x5∂x6
+ z2

5

∂2f7(E0)

∂x2
5

]
.

Upon substitution, we have

r = −p2z
2
2

f

S0
H

[ E

ghµH
+

2fε

β1
+

fq2P0µP
hβ1β2S0

Sγ2
(M0 + 2ε)

]
.

For the bifurcation coefficient s, we have

s = p2

[
z8
∂2f2(E0)

∂β1∂x8

]
=

f

β1
p2z2.

Since r < 0 and s > 0, it implies that a forward bifurcation exists at
R0 = 1. This is display graphically in Figure 2. We have the following
theorem.
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Theorem 4. The model (1) exhibits a forward bifurcation at R0 = 1.

This means that the endemic equilibrium bifurcates forward and exists
only when R0 > 1.
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Figure 2: Forward bifurcation diagrams for I1H and IS as functions of R0. All
parameters are in Table 1.
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3.4 Sensitivity Analysis

Sensitivity analysis investigates the robustness of model prediction to its
parameters given that there are mostly errors in collecting data and param-
eter values are presumed [9]. In disease modelling, it tells how important
each parameter of model is to disease eradication as a result of its impact on
the basic reproduction number, R0. Since basic reproduction number, R0

is a threshold quantity that determines the eradication and persistence of
the disease, sensitivity analysis is carried out on R0 to find out the most in-
fluential model parameters to be targeted for intervention strategies. Some
of the nominal values and ranges of the parameters are obtained from [12]
and [14] while some are assumed. For each of these parameters range with
an assumption of statistical independence, the simulations are evaluated
using the partial rank correlation coefficients (PRCCs) of the parameters
of interest. The Tornado plot of the PRCC is displayed in Fig. 3 while the
relationship of R0 and the most influential parameters is given in Fig. 4.

For the Tornado plot, the parameters with negative PRCCs reduce the
spread of the disease if they are increased while the parameters with pos-
itive PRCCs promote the spread of disease whenever they are increased.
Hence in Fig. 4, increasing mortality rates of cercariae, (µP ), miracidia,
(µM ), as well as the rates at which acute infective and chronic infective hu-
man are transferred to the treatment class, (σ1, σ2) will reduce the spread of
schistosomiasis in the population. Still in Fig. 4, it could be observed that
the transmission rates for human population and snail population (β1, β2),
the number of eggs secreted by infected humans (NE), shedding rate for in-
fected human and infected snails (γ1, γ2) and the parameter that influences
the shedding rate for chronic infected class (α) contribute to the burden of
schistosomiasis in the population.

4 Optimal control analysis

Optimal control deals with finding a control law for a given system in
order to obtain a certain optimality criterion.

With the results of the sensitivity analysis in Fig. 4, we formulate an
optimal control model of model (1) to determine optimal prevention in
terms of public health education (u(t)), diagnosis and treatment (v(t)) and
snail control (w(t)) strategies that will reduce the burden of schistosomiasis
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Figure 3: Tornado plot showing the impact of model parameters on the dynamics
of the schistosomiasis model.
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Figure 4: Monte Carlo simulations for the six parameters with the highest sig-
nificant PRCC values, generated using the parameter values in Table 1. In each
simulations run, 1000 simulations of the randomly selected parameters were used.
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with minimal implementation cost. This is given by

dSH
dt

= ΛH + eTH −
(1−mu(t))β2PSH

P0 + εP
− µHSH

dI1H

dt
=

(1−mu(t))β1PSH
P0 + εP

− ((1− v(t))(k + δ1H)

+ σ1 + µH + η1v(t))I1H

dI2H

dt
= (1− v(t))kI1H − ((1− v(t))δ2H + σ2 + µH + η2v(t))I2H

dTH
dt

= (σ1 + η1v(t))I1H + (σ2 + η2v(t))I2H − (e+ µH)TH

dM

dt
= (1−mu(t))NEγ1(I1H + αI2H)− (µM + bdw(t))M

dSS
dt

= ΛS −
β2MSH
M0 + εM

− µSSS − d1SS − bdw(t)SS

dIS
dt

=
β2MSH
M0 + εM

− (µS + d1 + bdw(t) + δS)IS

dP

dt
= (1− bw(t))γ2IS − (µP + bdw(t))P



(7)

and is subject to initial conditions of the autonomous system (1). Here, η1

and η2 are the rates of diagnosis and treatment of infected humans, I1H

and I2H respectively, m is the compliance rate of public health education,
b as the efficacy rate of the snail control and d the death rate due to snail
control strategy.

Using Pontryagin’s Maximum Principle [26] with time interval [0, tf ],
where tf is the final time on the control functions, we determine the du-
ration for disease elimination for equation (7) with initial conditions. The
objective functional is given by

Γ(u, v, w) =

∫ tf

0
(ρ1I1H + ρ2I2H + ρ3NS + ρ4M + ρ5P

+
1

2
C1u

2(t) +
1

2
C2v

2(t) +
1

2
C3w

2(t))dt (8)

subject to the system of differential equations (7). Here, C1, C2 and C3 are
the weights associated with the costs of control programs (u(t), v(t), w(t)),
ρ1, ρ2, ρ3, ρ4 and ρ5 are positive weights to balance the factors of the acute
infected humans, chronic infected humans, total snail population, miracidia
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and cercariae respectively while tf is the final time for implementation of
the control functions.

To minimise the number of infected humans, snail population, miracidia
and cercariae populations while minimising the cost of implementing these
controls u(t), v(t) and w(t), we seek an optimal control, u∗(t), v∗(t) and
w∗(t), such that

Γ(u∗, v∗, w∗) = min
(u,v,w)∈Ψ

Γ(u, v, w)

where Ψ = {u(t), v(t), w(t)|0 ≤ u(t) ≤ 1, 0 ≤ v(t) ≤ 1, 0 ≤ w(t) ≤ 1, 0 ≤
t ≤ tf} is a bounded Lebesgue measurable control set subject to equation
(7) and initial conditions.

To determine the duration for disease elimination for equation (7) with
initial conditions using the Pontryagin’s maximum principle [26] with time
interval [0, tf ], the Hamiltonian, H, is defined by

H = ρ1I1H + ρ2I2H + ρ3NS + ρ4M + ρ5P

+1
2C1u

2(t) + 1
2C2v

2(t) + 1
2C3w

2(t)

+Ω1

(
ΛH + eTH − (1−mu(t))β1PSH

P0+εP − µHSH
)

+Ω2

(
(1−mu(t))β1PSH

P0+εP

−((1− v(t))(k + δ1H) + σ1 + µH + η1v(t))I1H

)
+Ω3((1− v(t))kI1H − ((1− v(t))δ2H + σ2 + µH + η2v(t))I2H)

+Ω4((σ1 + η1v(t))I1H + (σ2 + η2v(t))I2H − (e+ µH)TH)

+Ω5((1−mu(t))NEγ1(I1H + αI2H)− (µM + bdw(t))M)

+Ω6(ΛS − β2MSS
M0+εM − (µS + d1 + bdw(t))SS)

+Ω7

(
β2MSS
M0+εM − (µS + d1 + bdw(t) + δS)IS

)
+Ω8((1− bw(t))γ2IS − (µP + bdw(t))P )



(9)

where Ω1,Ω2,Ω3,Ω4,Ω5,Ω6,Ω7,Ω8 are the adjoint variables of the state
variables, SH , I1H , I2H , TH ,M, SS , IS , P respectively. The control set Ψ is
closed and convex following the approach in [27, 13].

Theorem 5. Given the optimal control (u∗(t), v∗(t), w∗(t)) and solutions
S∗H(t), I∗1H (t), I∗2H(t), T ∗H(t),M∗(t), S∗S(t), I∗S(t), P ∗(t) of the corresponding
state system (7) that minimises Γ(u(t), v(t), w(t)) over Ψ, there exist ad-
joint variables Ω1,Ω2,Ω3,Ω4,Ω5,Ω6,Ω7,Ω8 that satisfy the following sys-
tems of equations,

Biomath Communications 9 (2022), 2203071, 10.11145/bmc.2022.03.071 19/28

https://doi.org/10.11145/bmc.2022.03.071


dΩ1

dt
=

(1−mu(t)∗)β1P
∗

P0 + εP ∗
(Ω1 − Ω2) + Ω1µH

dΩ2

dt
= −ρ1 + (Ω2 − Ω3)k(1− v∗(t)) + (Ω2 − Ω4)(σ1 + η1v

∗(t))

+ Ω2((1− v∗(t))δ1H + µH)− Ω5(1−mu∗(t))NEγ1

dΩ3

dt
= −ρ2 + Ω3((1− v∗(t))δ2H + µH)

+ (Ω3 − Ω4)(σ2 + η2v
∗(t))− Ω5(1−mu∗(t))NEγ1α

dΩ4

dt
= (Ω4 − Ω1)e+ Ω4µH

dΩ5

dt
= −ρ4 + Ω5(µM + bdw∗(t)) + (Ω6 − Ω7)

β2S
∗
SM0

(M0 + εM∗)2

dΩ6

dt
= −ρ3 + Ω6(µS + d1 + bdw∗(t)) + (Ω6 − Ω7)

β2M
∗

M0 + εM∗

dΩ7

dt
= −ρ3 + Ω7(µS + δS + d1 + bdw∗(t))− Ω8(1− bw∗(t))γ2

dΩ8

dt
= −ρ5 + Ω8(µP + bdw∗(t)) + (Ω1 − Ω2)

(1−mu∗(t))β1S
∗
HP0

(P0 + εP ∗)2



(10)

with transversality conditions

Ω1(tf ) = Ω2(tf ) = Ω3(tf ) = Ω4(tf ) = Ω5(tf )

= Ω6(tf ) = Ω7(tf ) = Ω8(tf ) = 0. (11)

Also, the optimality conditions u∗(t), v∗(t) and w∗(t) are given by

u∗(t) = max{0,min(1, u∗∗(t))}
v∗(t) = max{0,min(1, v∗∗(t))}
w∗(t) = max{0,min(1, w∗∗(t))}

 , (12)

where

u∗∗(t) =
1

C1

[
(Ω2 − Ω1)S∗Hmβ1P

∗

P0 + εP ∗
+mγ1NEΩ5(I∗1H + αI∗2H)

]
,

v∗∗(t) =
1

C2
[(Ω3 − Ω2)kI∗1H + (Ω2 − Ω4)η1I

∗
1H + (Ω3 − Ω4)η2I

∗
2H

−Ω2δ1HI
∗
1H − Ω3δ2HI

∗
2H ] ,

w∗∗(t) =
1

C3
[(Ω5M

∗ + Ω6S
∗
S + Ω7I

∗
S + Ω8P

∗)bd+ bΩ8I
∗
Sγ2] .

(13)
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Proof. The adjoint equation (10) is determined by differentiating Hamilto-
nian function, H, with respect to SH , I1H , I2H , TH ,M, SS , IS , and P and
multiply by minus, that is

dΩ1

dt
= − ∂H

∂SH
,

dΩ2

dt
= − ∂H

∂I1H
,

dΩ3

dt
= − ∂H

∂I2H
,

dΩ4

dt
= − ∂H

∂TH
,

dΩ5

dt
= − ∂H

∂M
,

dΩ6

dt
= − ∂H

∂SS
,

dΩ7

dt
= − ∂H

∂IS
,

dΩ8

dt
= −∂H

∂P

with respective transversality conditions of equation (8).
For the optimality conditions, ∂H

∂u = 0, ∂H∂v = 0 and ∂H
∂w = 0 is used to

solve for u∗(t), v∗(t), w∗(t) respectively on the interior of the control set,
Ψ = {u(t), v(t), w(t)|0 ≤ u(t) ≤ 1, 0 ≤ v(t) ≤ 1, 0 ≤ w(t) ≤ 1, 0 ≤ t ≤ tf}
and this yield the optimal control characterization (12).

The optimality system comprises of equations (7), the adjoint system
(10), initial conditions at t = 0, boundary conditions (11) and the charac-
terisation of the optimal control (12) with (13). Thus, the optimal control
can be computed using the optimality system. Hence, using the fact that
the second derivatives of the Hamiltonian with respect to u, v and w re-
spectively are positive indicates that the optimal problem is minimum at
control u∗, v∗ and w∗.

5 Numerical simulations and discussion

Numerical simulations are carried out using parameter values in Table 1
to illustrate the behaviour of the schistosomiasis transmission dynamics
with or without controls. The values for weight constants and cost constants
used in the simulations are ρ1 = 0.6, ρ2 = 0.4, ρ3 = ρ4 = ρ5 = 0.2, C1 =
2 × 106, C2 = C3 = 2 × 104 with d = 0.0000369, d = m = η1 = η2 = 0.5.
The simulations are implemented for the first 1000 days.

5.1 Discussion

The impact of implementing one control, two controls and all the three
controls on infected classes of model (1) are depicted in Figs. 5, 6 and 7
respectively. The controls are public health education (u(t)), diagnosis and
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Figure 5: Simulation results of the infected classes, I1H(t), I2H(t), M(t), IS(t),
P (t) with only one control. All parameter values of Table 1 are used.

treatment (v(t)) and snail control (w(t)). In Fig. 5(a)-5(e), there is a sig-
nificant reduction in the number of infected human, miracidia and infected
snail when only v(t) is carried out when compared with only u(t) and only
w(t) (see Fig. 5(a)-5(d)). This effect is more on the chronic infected popu-
lation as it reduces them drastically to a minimum (Fig. 5b). Meanwhile,
the implementation of only w(t) and only u(t) behave the same for infected
human population (see Fig. 5(a)-5(b)) while for the miracidia and infected
snail, implementing only u(t) is preferable to only w(t). Applying only w(t)
in the population reduces cercariae population more than as seen in other
infected compartments. This reduction does not occur in infected snails
population because the number of infected snail depends on the amount of
miracidia in the population which also depends on the number of infected
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Figure 6: Simulation results of the infected classes, I1H(t), I2H(t), M(t), IS(t),
P (t) with two controls. All parameter values of Table 1 are used.

humans.
The application of two combined control measures on infected compart-

ments are displayed in Fig. 6(a)-6(e). It is observed that implementation
of (u(t), (v(t)) reduces the number of infected classes (I1H(t), I2H(t),M(t),
IS(t), P (t)) in the population when compared with other two combined con-
trols, (u(t), w(t)) and (v(t), w(t)) while the implementation of v(t), w(t))
lowers the infected classes more than (u(t), w(t)).

Furthermore, Fig. 7(a)-7(e) show a clear difference between the imple-
mentation of all three controls and without control. There is a reduction
in the population of infected compartments when the three controls are
implemented. Fig. 7(f) shows the control profile for the three controls and
their influence in reducing the disease prevalence. The control, u is kept at
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maximum, 100%, for the first 50 days and declines gradually to 50% where
it remains for the next 150 days before increasing to the upper bound which
is maintained for 750 days and then gradually reduces to the lower bound
at the final time of implementation. For the control, v, it declines from
the 100% to 45% for the first 50 days before gradually increases and peaks
at 50% where it gradually reduces to the lower bound at the final time of
implementation. The control, w is maintained at 100% for the duration of
implementation.
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Figure 7: Simulation results of the infected classes, I1H(t), I2H(t), M(t), IS(t),
P (t) with or without control measures and the control profiles. W/C means with
control measures while W/O/C means without control measures. All parameter
values of Table 1 are used.
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It could be observed from Figs. 5 and 6 that combined controls with
inclusion of diagnosis and treatment, v(t), is important in the control of
schistosomiasis transmission which is supported by Kanyi et al. [8]. Di-
agnosis and treatment for the infected human will prevent the mortality
rate of this disease but this have to be complemented with other controls.
According to the WHO [15], complementing control strategies is important
in eradicating schistosomiasis disease in the population especially where is
endemic. So, implementing public health education (u(t)), diagnosis and
treatment (v(t)) and snail control (w(t)) simultaneously will reduce the bur-
den of the disease. However, some snail controls such as chemical control
are toxic to other aquatic bodies and it may be difficult to single out the
chemical control that will focus only on the snail population even though
snails are special food in Africa. Hence, it is preferable to implement public
health education and diagnosis and treatment (u(t), v(t)) simultaneously in
order to eradicate schistosomiasis transmission in the affected area. This is
support by work of Chiyaka and Garira [12] that advised that intervention
strategies should target snail to human transmission.

6 Conclusion

The dynamics of schistosomiasis disease transmission is analysed in this
research. The model has eight compartments divided into susceptible hu-
man, acute infected human, chronic infected human, treatment compart-
ment, miracidia, susceptible snail, infected snail and cercariae populations
respectively. The stability analysis for the disease-free and endemic equi-
libria are investigated in terms of basic reproduction number, R0 and the
model exhibits a forward bifurcation. The sensitivity analysis for influence
of the parameters on schistosomiasis is examined using the PRCC. With
the result of sensitivity analysis, the optimal control model with public
health education, diagnosis and treatment and snail control as controls is
developed and analysed. Through the numerical simulations, the imple-
mentation of public health education, diagnosis and treatment and snail
control simultaneously reduce the transmission of the schistosomiasis in
the population. However due to the toxicity of some snail controls to wa-
ter bodies, it will be advisable to implement public health education and
diagnosis and treatment of the infected humans together.
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