
Articles Biomath Communications

Biomath Communications

www.biomathforum.org/biomath/index.php/conference

Mathematical analysis and optimal

control of Schistosomiasis Transmission

model

Chinwendu E. Madubueze1, Reuben I. Gweryina2 and Agatha
Abokwara3

Joseph Sarwuan Tarka University, Department of Mathematics
Makurdi, Nigeria

1ce.madubueze@gmail.com,
2 gweryina.reuben@uam.edu.ng,

3agathamicheal@gmail.com

Abstract

Schistosomiasis, a health challenge in many communities,
is prevalent as the rate of infection is one in every thirty indi-
viduals. In this work, a deterministic model for schistosomi-
asis transmission dynamics is studied. The stability proper-
ties of equilibrium states, disease-free and endemic equilibria
are established in terms of the basic reproduction number,
R0. The sensitivity analysis of R0 with respect to the model
parameters is carried out using Partial rank correlation co-
efficients (PRCCs). The optimal control model with control
measures, public health education, early diagnosis and treat-
ment and snail control, is formulated and its optimality sys-
tem is derived using Pontragyin’s maximum Principle. Sim-
ulation results showed that simultaneous implementation of
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public health education, early diagnosis and treatment and
snail control will reduce the burden of the schistosomiasis in-
fection in the population. However due to toxicity of some
snail controls to other aquatic bodies and difficulty to sin-
gle out the chemical control that will focus only on the snail
population even though snails are special food in Africa, it
is preferable to implement public health education and early
diagnosis and treatment simultaneously in order to eradicate
schistosomiasis transmission in the affected regions.

1 Introduction

Schistosomiasis is a public health challenge in many countries as the
rate of infection is one in every thirty individuals seen [5]. This
makes its control a challenging task in areas where the infection is
endemic. There are two stages of the disease; acute and chronic
stages [15]. The acute stage is prevalent among persons who are ex-
posed to fresh water in endemic regions while chronic stage occurs as
a result of continuous deposition of the parasite eggs in the body of
those who had acute infection [5]. The prevention that is put in place
for schistosomiasis control focuses on expanding the use of mass ad-
ministration of praziquantel, an anti schistosomal drug, to minimize
infection-induced sickness which reduces infection rate among school-
age children and adults in high-risk populations [2]. Although, mass
drug administration is determined by schistosomiasis prevalence in
affected communities, re-infection can occur even after praziquantel
is administered [15] because treatment cannot eliminate the disease
as the recovery rate only changes the speed of approaching equilib-
rium and in the mean time prevalence can be reduced [20]. There
are concerns that repeated usage of praziquantel could lead to a sit-
uation where the body develop resistance to the effectiveness of the
drug [3]. According to King et al. [30], schistosoma transmission can
be reduced if snail control strategies will be implemented properly
and this would complement strategies of modern day mass drug de-
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livery programs, resulting in much improved prevention of infection
and re-infection of schistosomiasis.

Several mathematical models on schistosomiasis have been stud-
ied and recommendations were made arising from the results of the
models. Guiro et al. [1] observed through the use of threshold anal-
ysis that public enlightenment campaign has a positive impact on
controlling schistosomiasis. Diaby et al. [16] considered snail com-
petition for the disease control. Ishikawa et al. [17] predicted that
among various possible control measures on the effective elimination
of schistosoma, there is little probability of the resurgence of an epi-
demic, Chen et al.[18] proposed that environmental factors should
be included in the control and eradication of schistosomiasis while
Gao et al. [7] and Dida et al. [6] observed that the use of mollus-
cicides as snail control would be the most effective control measure
to curtail schistosomiasis transmission. Furthermore, Abokwara and
Madubueze [25] considered the impact of public health education and
snail control while Kanyi et al. [8] discussed the optimal control of
schistosomiasis with early treatment, snail elimination, and chlorina-
tion of the water body as control measures.
From the aforementioned authors, it is only Kanyi et al. [8] that stud-
ied optimal control of schisotomiasis. Application of optimal control
to schisotomiasis disease provides information on how the implemen-
tation of control measures minimize schisotomiasis transmission in
an endemic population. Therefore, this research would consider the
optimal control impact of public health education, snail control us-
ing molluscicides and early treatment on schistosomaisis transmission
which is an extension of Abokwara and Madubueze [25] and Kanyi et
al. [8]. Abokwara and Madubueze[25] did not consider the treatment
of chronic stage of the disease and optimal control and sensitivity
analysis of their model. For Kanyi et al. [8], the public health educa-
tion impact and chronic stage of the disease and sensitivity analysis
were not examined. The public health eduction is considered based
on the result of Abokwara and Madubueze [25] and Sacolo et al. [22]
that enlightening members of the society on schistosomiasis will help
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to reduce the burden of the disease. The work will involve carrying
out qualitative analysis and sensitivity analysis of the model param-
eters to identify the most influential parameter(s) to be targeted for
intervention strategies. With the results of sensitivity analysis, an op-
timal control model will be formulated for effective decision making
in controlling the spread of schisotosomiasis.
The rest of this paper consists model formulation in Section II, model
analysis in Section III, Section IV is the optimal control analysis with
Section V as the numerical simulation and discussion while conclusion
is Section VI.

2 Model formulation

The model comprises two host populations, the human population
and the snail population, the miracidia, M(t) and the cercaria, P (t)
at any time, t. The human population is subdivided into susceptible
human population, SH(t), acute infected human population, I1H(t),
chronic infected human population, I2H(t), treatment compartment,
TH(t). Individuals in the human population moves from one class
to another as their status changes and the disease evolves. The in-
fection occurs when the susceptible human have contact with fresh
water that has free living larva called cercariae. The susceptible in-
dividuals, SH(t) progress to I1H(t) as a result of infection at a rate,
λH , where λH = β1P

P0+εP
, with P0, β1 and ε defined in [12]. The acute

infected human, I1H progresses to Chronic stage when treatment is
not given early or completed and this result to continue deposition
of the parasite eggs that are trapped in the host (human) tissues [5].
The treatment class, TH(t), constitutes of infected humans, I1H(t)
and I2H(t), undergoing treatment and they can not shed the eggs
due to their treatment. They recover and become susceptible again.
The infected human, I1H(t) and I2H(t), contribute to the life cycle of
the schistosoma as they shed eggs when they come to swim or fetch
water from river. These eggs find their way into fresh water supply
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and hatch into a free swimming ciliated larva called miracidium and
this constitute the miracidia population, M(t).
For the snail population, it is subdivided into susceptible snail pop-
ulation, SS(t) and infected snail population, IS(t) at any time, t.
The susceptible snail comes in contact with miracidia at the rate,
λS, where λS = β2M

M0+εM
with β2, and ε, and M0 defined in [12]. The

infected snails release a free living larva called cercariae, P (t). There
is no direct transmission of the disease between human and snail pop-
ulation [15]. Furthermore, disease induced death, δ2H for I2H(t), is
assumed to be greater than disease induced death in δ1H for I1H(t),
climate variation do not affect the contact patterns and reproduction
does not take place in IS class as a result of infection. The de-
scriptions of the parameters of the model and the model systematic
diagram are presented in Table 1 and Figure 1 respectively.

Figure 1: Schematic diagram of the Schistosomiasis disease
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Table 1: Parameter descriptions and values

Parameter Epidemiological Interpretation Baseline(Range) Sources
ΛH Recruitment rate for human population 254(−) [25]
ΛS Recruitment rate for snail population 3000(−) [12]
k Progression rate from I1H to I2H 0.0262(0.02− 0.03) [25]
δ1H Disease induced death for I1H 2.74(2− 90)× 10−4 [12]
δ2H Disease induced death for I2H 9.13((80− 100)× 10−4 [25]
e Re-susceptibility rate from TH to SH 6.87(5− 7)× 10−4 [14]
µH Natural death rate for human population 4.379× 10−4(−) [12]
µS Natural death rate for snail population 0.000569(−) [12]
µM Natural death rate for M 0.9(0.6− 0.95) [12]
µP Natural death rate for P 4(3− 6)× 10−3 [12]
P0 Half saturation constant of cercariae 9× 107(−) [12]
δS Disease induced death for snail population 4.012(3.5− 45)× 10−4 [14]
M0 Half saturation constant of Miracidia 1× 108(-) [12]
ε Growth velocity limitation of P and M 0.2 [12]
β1 Transmission rate for human population 0.09753(0.07− 0.12) [25]
β2 Transmission rate for snail population 0.616(0.5− 0.8) [12]
α Influential shedding rate for I2H 1.01(0.5− 1.5) [25]
γ1 Shedding rate for I1H 6.96(6.0− 7.5) [25]
γ2 Shedding rate for IS 2.6(2.0− 3.5) [12]
d1 Predation rate for snail population 0.01(−) Assumed
NE Number of eggs secreted by humans 300(250− 350) [12]
σ1 Treatment rate for I1H 0.05(0.04− 0.06) [25]
σ2 Treatment rate for I2H 0.03(0.02− 0.04) [25]

With the Table 1 and Figure 1, we have the under listed differen-
tial equations as follows

dSH

dt
= ΛH + eTH − λHSH − µHSH

dI1H
dt

= λHSH − (k + δ1H + σ1 + µH)I1H
dI2H
dt

= kI1H − (σ2 + µH + δ2H)I2H
dTH

dt
= σ1I1H + σ2I2H − eTH − µHTH

dM
dt

= NEγ1(I1H + αI2H)− µMM
dSS

dt
= ΛS − λSSS − µSSS − d1SS

dIS
dt

= λSSS − (µS + d1 + δS)IS
dP
dt

= γ2IS − µPP


(1)

subject to initial conditions SH(0) > 0, I1H(0) ≥ 0, I2H(0) ≥ 0,
M(0) ≥ 0, SS(0) > 0, IS(0) ≥ 0 and P (0) ≥ 0 with λH = β1P

P0+εP
,

13



λS = β2M
M0+εM

. The model parameters are assumed to be positive.

3 Model Analysis

3.1 Invariant region and positivity of the solu-
tions

Let NH(t) = SH(t)+I1H(t)+I2H(t)+TH(t) and NS(t) = SS(t)+IS(t)
be total human and snail populations at any time, t with initial
conditions NH(0) = NH0 and NS(0) = NS0. We state the following
lemma.

Lemma 1. (Invariant region) All feasible solutions of system
(1) are uniformly bounded in a proper subsetD = DH×DS×DM×DP

with non-negative initial conditions whereDH = {(SH , I1H , I2H , TH)ϵℜ4
+ :

NH(t) ≤ ΛH

µH
}, DS =

{
(SS, IS)ϵℜ2

+ : NS(t) ≤ ΛS

µS+d1

}
, DP =

{
P ≤

ΛSγ2)
(µS+d1)µP

}
and DM =

{
M ≤ ΛHγ1NE(1+α)

µHµM

}
are the subsets for human

population, snail population, cercariae and miracidia respectively.
Proof: We have from the total human population that dNH

dt
≤ ΛH −

µHNH . Applying Birkhoff and Rota Theorem [31] on differential in-
equality and integrating with initial condition, NH(0), we have

NH ≤ ΛH

µH

−
[(ΛH − µHNH(0))

µH

]
e−µH t.

As t → ∞, the population size, NH approaches NH ≤ ΛH

µH
.

For the Miracidia population, we have from the fifth equation of
model equation (1) that

dM

dt
= NEγ1I1H +NEγ1αI2H − µMM.

But, I1H ≤ NH(t) and I2H ≤ NH(t), so that

dM

dt
≤ γ1NE(1 + α)NH(t)− µMM.
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With NH ≤ ΛH

µH
, we have

dM

dt
≤ γ1NE(1 + α)

ΛH

µH

− µMM.

Applying the theorem in [31] with initial conditions, M(0) yields

M ≤ ΛHγ1NE(1 + α)

µMµH

−
[ΛHγ1NE(1 + α)

µMµH

−M(0)
]
e−µM t.

As t → ∞, the population size, M(t) ≤ ΛHγ1NE(1+α)
µMµH

.

For the snail population with initial condition, NS(0),
dNS

dt
≤ ΛS −

(µS + d1)NS so that

NS ≤ ΛS

(µS + d1)
–
[ΛS − (µS + d1)NS(0)

(µS + d1)

]
e−(µS+d1)t.

As t → ∞, the population size, NS ≤ ΛS

(µS+d1)
.

Furthermore for cercariae concentration P (t) of the eighth of model
equation (1) with IS ≤ NS ≤ ΛS

(µS+d1)
, we have

dP

dt
≤ γ2ΛS

(µS + d1)
− µP .

With the theorem in [31] and initial conditions, P (0), we get

P ≤ ΛSγ2
(µS + d1)µP

−
[ ΛSγ2
(µS + d1)µP

− P (0)
]
e−µP t.

As t → ∞, P (t) ≤ ΛSγ2
(µS+d1)µP

.

Hence, the feasible solutions of model (1) will enter the positive in-
variant region D = DH ×DS ×DM ×DP . This completes the proof.
Theorem 1. (Positivity of solutions) The solutions of system
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(1),SH , I1H , I2H , TH , M , SS, IS, P with non-negative initial data are
non-negative for all time, t > 0.
Proof: Let τ = sup{t > 0 : SH(0) > 0, I1H(0) > 0, I2H > 0, TH >
0,M(0) > 0, SS(0) > 0, IS(0) > 0, P (0) > 0}ϵ[0, t].
From the first equation of (1), we have

dSH

dt
= ΛH + eTH − λHSH − µHSH ≥ −(λH + µH)SH .

Using integrating factor method with initial condition, SH(0), it yields

SH(t) ≥ SH(0)exp
{
−

∫ t

0

(λH(τ) + µH)dτ
}
> 0.

Hence, SH is always positive for t > 0.
In similar way for t > 0, I1H > 0, I2H > 0, TH > 0, M > 0, SS > 0,
IS > 0, P > 0. Therefore, the solutions (SH(t), I1H(t), I2H(t), TH ,M(t),
SS(t), IS(t), P (t)) of model equation (1) are non- negative for t > 0.
This implies that the model is well posed and make biological mean-
ing so it is possible to carry out mathematical analysis of the model.

3.2 Existence of the disease-free equilibrium state
and basic reproduction number, R0

The disease-free equilibrium state, E0, is an equilibrium state where
there is no infection. It is given by

E0 = (S0
H , I

0
1H , I

0
2H , T

0
H ,M

0, S0
S, I

0
S, P

0)

=
(ΛH

µH

, 0, 0, 0, 0,
ΛS

µS + d1
, 0, 0

)
.

(2)

The basic reproduction number, R0, is the number of new cases repro-
duced in a wholly susceptible population when an infective individual
is introduced into the population [10].
Applying the next generation matrix method [10], let F(x) be the
rate of new infections and V(x) be the rate of transition by any other
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means with x = (I1H , I2H , TH ,M, IS, P, SH , SS). The model equation
(1) can be written as

dx

dt
= F(x)− V(x)

where

F =



β1PSH

P0+εP

0
0
0

β2MSS

M0+εM

0
0
0


,

V =



fI1H
−kI1H + gI2H

−σ1I1H − σ2I2H + hTT

−NEγ1(I1H + αI2H) + µMM
qIS

−γ2IS + µPP

−ΛH − eTH + β1PSH

P0+εP
+ µHSH

−ΛS + β2MSS

M0+εM
+ µSSS


where

f = k + σ1 + δ1H + µH , g = µH + σ2 + δ2H ,

n = µS + d1, h = e+ µH , q = n+ δS.
(3)

Taking the derivatives of F and V at E0 give the Jacobian matri-
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ces, F and V , as follows

F =



0 0 0 0 0
S0
Hβ1

P0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0
S0
Sβ2

M0
0 0

0 0 0 0 0 0


,

V =


f 0 0 0 0 0
−k g 0 0 0 0
−σ1 −σ2 h 0 0 0

−NEγ1 −NEγ1α 0 µM 0 0
0 0 0 0 q 0
0 0 0 0 −γ2 µP

 .

The eigenvalues of matrix FV −1 are

0, 0, 0, 0,±

√
S0
HS

0
Sβ2β1γ2γ1NE(αk + g)

M0P0µMµPfgq
.

With the definition of basic reproduction number, R0, as the maxi-
mum positive eigenvalue of FV −1, we have

R0 =

√
S0
HS

0
Sβ2β1γ2γ1NE(αk + g)

M0P0µMµPfgq

=
√

R0S(R0HA +R0HC)

(4)

where R0S =
S0
Sβ2γ2
qP0µP

, R0HA =
S0
Hβ1γ1NE

fM0µM
, R0HC =

S0
Hβ1γ1NEαk

fgM0µM
. Here,

R0S, R0HA, R0HC are the reproduction numbers for the snail and miracidia
interaction, acute infected human and cercariae interaction and chronic
infected human interaction respectively.
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3.2.1 Stability of the disease-free equilibrium state

Theorem 2. If E0 is the DFE of the model, then E0 is locally
asymptotically stable if R0 < 1, but unstable if R0 > 1.

Proof. This is done by linearizing equation (1) at DFE, E0 to
give a Jacobian matrix, J(E0) as

−µH 0 0 e 0 0 0 −b
0 −f 0 0 0 0 0 b
0 k −g 0 0 0 0 0
0 σ1 σ2 −h 0 0 0 0
0 a aα 0 −µM 0 0 0
0 0 0 0 −c −n 0 0
0 0 0 0 c 0 −q 0
0 0 0 0 0 0 γ2 −µP


(5)

with a = NEγ1, b =
S0
Hβ1

P0
and c =

S0
Sβ2

M0
.

The eigenvalues of the Jacobian matrix, J(E0) are −µH ,−h,−n
and the roots of the following characteristic equation

λ5 + A1λ
4 + A2λ

3 + A3λ
2 + A4λ+ A5 = 0 (6)

where

A1 = f + µM + g + q + µP ,

A2 = f(g + q + µM + µP ) + g(q + µM + µP )

+ q(µM + hµP ) + µPµM ,

A3 = fg(q + µM + µP ) + q(f + g)(µP + µM)

+ µPµM(f + g + q),

A4 = fgq(µP + µM) + gµMµP (q + f)

+ fqµMµP (1−R0SR0HA),

A5 = fgqµMµP (1−R2
0).

Using [4], the roots of the polynomial (6) have negative real part
solutions if A1, A2, A3, A4, A5 are positive which is true if R0 < 1.
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This means that the Jacobian matrix (5) has negative eigenvalues
whenever R0 < 1. Hence, the DFE, E0 is locally asymptotically stable
if R0 < 1. However when the R0 > 1, A5 < 0. This implies that
positive eigenvalue exists as such means that the DFE, E0 is unstable
if R0 > 1.

3.3 Existence and stability of the endemic equi-
librium state

Endemic equilibrium state, Ee, is the state where the infected state
variables are not equal to zero. At equilibrium state, dSH

dt
= 0, dI1H

dt
=

0, dI2H
dt

= 0, dM
dt

= 0, dSS

dt
= 0, dIS

dt
= 0, dP

dt
= 0.

Solving for non-zero infected state variables at equilibrium state gives
the endemic equilibrium state, Ee = (Se

H , I
e
1H , I

e
2H , T

e
H ,M

e, Se
S, I

e
S, P

e)
where

Se
H =

ΛH(nM0µMµHfghε(R2
0−1)+A+Eβ1µMM0n)

µH(nM0µM (ER2
0β1+µHfghε(R2

0−1))+A)
,

Ie1H =
ΛHβ1µMM0ghn(R2

0−1)

nM0µM (ER2
0β1+µHfghε(R2

0−1))+A
,

Ie2H =
kΛHβ1µMM0hn(R2

0−1)

nM0µM (ER2
0β1+µHfghε(R2

0−1))+A
,

T e
H =

ΛHβ1µMM0n(gσ1+kσ2)(R2
0−1)

nM0µM (ER2
0β1+µHfghε(R2

0−1))+A
,

M e =
NEγ1ΛHβ1M0hn(g+αk)(R2

0−1)

nM0(ER2
0β1+µHfghε(R2

0−1))+A
,

Se
S = fghM0µHµM (P0µP+ΛSγ2ε)+B

γ2(nM0β1µME+A)
,

IeS =
fghnP0M0µPµHµM (R2

0−1)

γ2(nM0β1µME+A)
,

P e =
fghnqP0M0µPµHµM (R2

0−1)

qµP (nM0β1µME+A)
.


where

A = M0εµHµMfghn+ hNEγ1β1ΛH(kα+ g)(nε+ β2),

E = fgh− e(kσ2 + gσ1) > 0,

B = ΛSγ2(hNEγ1β1ΛH(kα + g) +M0β1µME).

The endemic equilibrium state, Ee, exists whenever R0 > 1.

20



3.3.1 Bifurcation Analysis
A dynamical system is said to exhibit bifurcation when its parameter
value changes and causes a sudden qualitative change in its behaviour
[29]. Bifurcation can be forward or backward. When a bifurcation
is forward, it implies that the disease-free equilibrium and endemic
equilibrium state are locally asymptotically stable if R0 < 1 and
R0 > 1 respectively while in backward bifurcation, a coexistence
of the disease-free equilibrium and endemic equilibrium states occur
even when R0 < 1. This implies that when R0 < 1 in the presence
of control measures, it is not enough to control the spread of schis-
tosomiasis. Thus, there may be need for more control measures that
would make the bifurcation to be forward.
The bifurcation analysis is carried out using the Centre Manifold
Theory by [19] that involves choosing a bifurcation parameter.
We state the Centre Manifold Theory as follows.

Theorem 3: Centre Manifold Theory

Consider the following general system of ordinary differential equa-
tion with parameter ϕ. dx

dt
= f(x, ϕ), f : ℜn×ℜ −→ ℜ and fϵC2(ℜn×

ℜ). When 0 is an equilibrium point of the system (that is, f(0, ϕ) ≡ 0
for all ϕ) and it implies that

a. N = Dxf(0, 0) = ∂fi
∂xj

(0, 0) is the linearization matrix of the

system around the equilibrium 0 with ϕ evaluated at 0.

b. Zero is a simple eigenvalue of N and other eigenvalues of N
have negative real parts.

c. Matrix N has right eigenvector w and a left eigenvector v cor-
responding to the zero eigenvalue.

Let fk be the kth component of f and

p =
n∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj

(0, 0),
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q =
n∑

k,i=1

vkwi
∂2fk
∂xi∂ϕ

(0, 0).

The local dynamics of the system around the equilibrium point 0, is
totally determined by the signs of p and q.

i. p > 0 and q > 0. When ϕ < 0 with |ϕ| ≪ 1, 0 is locally asymp-
totically stable, and there exist a positive unstable equilibrium;
when 0 < |ϕ| ≪ 1, 0, 0 is unstable and there exist a negative
and locally asymptotically stable equilibrium.

ii. If p < 0 and q < 0, when ϕ < 0 with |ϕ| ≪ 1, 0 unstable; when
0 < |ϕ| ≪ 1, asymptotically stable, and there exist a positive
unstable equilibrium.

iii. If p > 0 and q < 0, when ϕ < 0 with |ϕ| ≪ 1, 0 unstable;
and there exists a locally asymptotically stable negative equi-
librium; when 0 < |ϕ| ≪ 1,0 is stable and a positive unstable
equilibrium appears.

iv. If p < 0 and q > 0, when ϕ changes from negative to positive, 0
changes its stability from stable to unstable. Correspondingly
to a negative unstable equilibrium becomes positive and locally
asymptotically stable.

Particularly, if p > 0 and q > 0, backward bifurcation occurs at ϕ = 0
and a forward bifurcation occurs if p < 0 and q > 0.
Let β∗

1 be the bifurcation parameter at R0 = 1 and it is obtained by
solving for β1 at R0 = 1 that is√

S0
HS

0
Sβ2β1γ2γ1NE(αk + g)

M0P0µMµPfgq
= 1.

This leads to

β∗
1 = β1 =

fgqnµHµMµPM0P0

ΛSΛHβ2γ1γ2NE(g + αk)
.
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At R0 = 1, the eigenvalues of the Jacobian matrix, J(E0) of equation
(6) has simple zero eigenvalue and negative eigenvalues using Routh-
Hurwitz criteria and [4]. Let wis = (w1, w2, w3, w4, w5, w6, w7, w8)
and vis = (v1, v2, v3, v4, v5, v6, v7, v8) be the right and left eigenvectors.
The right eigenvalues wis are determined by multiplying the Jacobian
matrix, J(E0) with wis and equated to zero. This is given as

w1 = − E

ghµH

w2, w3 =
k

g
w2, w4 =

gσ1 + kσ2

gh
w2,

w5 =
P0M0fqµP

β1β2S0
HS

0
Sγ2

w2, w6 = − P0fqµP

nβ1S0
Hγ2

w2,

w7 =
fµPP0

γ2β1S0
H

w2, w8 =
fP0

β1S0
H

w2, w2 = w2 > 0,

where E = fgh − e(gσ1 + kσ2) > 0. For the eigenvector vis, we
transpose the Jacobian matrix and multiply with vis which is equate
to zero to yield

v1 = 0, v3 =
γ1γ2NEαβ1β2S

0
HS

0
S

P0M0gqµMµP

v2, v4 = 0,

v5 =
γ2β1β2S

0
HS

0
S

P0M0qµPµM

v2, v6 = 0, v7 =
β1S

0
Hγ2

P0hµP

v2,

v8 =
β1S

0
H

P0µP

v2, v2 = v2 > 0.

Let SH = x1, I1H = x2, I2H = x3, TH = x4,M = x5, SS = x6, IS = x7,
P = x8. The functions

f2 =
β1x8x1

P0 + εx8

− fx2, f7 =
β2x5x6

M0 + εx5

− qx7

give non-zero partial derivative(s) at DFE, E0 as

∂2f2(E0)

∂x1∂x8

=
β1

P0

,
∂2f2(E0)

∂x2
8

= −2εS0
Hβ1

P 2
0

,

∂2f7(E0)

∂x5∂x6

=
β2

M0

,
∂2f7(E0)

∂x2
5

= −2εS0
Sβ2

M2
0

.
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Using the theorem in [19], the bifurcation coefficient, a, is given by

a = v2

[
w1w8

∂2f2(E0)

∂x1∂x8

+ w2
8

∂2f2(E0)

∂x2
8

]
+v7

[
w5w6

∂2f7(E0)

∂x5∂x6

+ w2
5

∂2f7(E0)

∂x2
5

]
.

Upon substitution, we have

a = −v2w
2
2

f

S0
H

[ E

ghµH

+
2fε

β1

+
fq2P0µP

hβ1β2S0
Sγ2

(M0 + 2ε)
]
.

For the bifurcation coefficient b, we have

b = v2

[
w8

∂2f2(E0)

∂β1∂x8

]
=

f

β1

v2w2.

Since a < 0 and b > 0, it implies that a forward bifurcation exists at
R0 = 1. This means that the endemic equilibrium bifurcates forward
and exists only when R0 > 1. This is display graphically in Figure 2.
We have the following theorem.

Theorem 4. The model (1) exhibits a forward bifurcation at
R0 = 1.

3.4 Sensitivity Analysis

Sensitivity analysis investigates the robustness of model prediction
to its parameters given that there are mostly errors in collecting data
and parameter values are presumed [9]. In disease modelling, it tells
how important each parameter of model is to disease eradication as a
result of its impact on the basic reproduction number, R0. Since ba-
sic reproduction number, R0 is a threshold quantity that determines
the eradication and persistence of the disease, sensitivity analysis is
carried out on R0 to find out the most influential model parameters
to be targeted for intervention strategies. Some of the nominal val-
ues and ranges of the parameters are obtained from [12] and[14] while
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some are assumed. For each of these parameters range with an as-
sumption of statistical independence, the simulations are evaluated
using the partial rank correlation coefficients (PRCCs) of the param-
eters of interest. The Tornado plot of the PRCC is displayed in Fig.
2 while the relationship of R0 and the most influential parameters is
given in Fig. 3.
For the Tornado plot, the parameters with negative PRCCs reduce
the spread of the disease if they are increased while the parameters
with positive PRCCs promote the spread of disease whenever they
are increased. Hence in Fig. 2, increasing mortality rates of cercariae,
(µP ), miracidia, (µM), as well as the rates at which acute infective
and chronic infective human are transferred to the treatment class,
(σ1, σ2) will reduce the spread of schistosomiasis in the population.
Still in Fig. 2, It could be observed that the transmission rates for
human population and snail population (β1, β2), the number of eggs
secreted by infected humans (NE), shedding rate for infected human
and infected snails (γ1, γ2) and the parameter that influences the
shedding rate for chronic infected class (α) contribute to the burden
of schistosomiasis in the population.

4 Optimal control analysis

Optimal control deals with finding a control law for a given system
in order to obtain a certain optimality criterion.
With the results of the sensitivity analysis in Fig. 2, we formulate an
optimal control model of model (1) to determine optimal prevention,
treatment and snail control strategies that will reduce the burden of
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schistosomiasis with minimal implementation cost. This is given by

dSH

dt
= ΛH + eTH − (1−mu(t))β2PSH

P0 + εP
− µHSH

dI1H
dt

=
(1−mu(t))β1PSH

P0 + εP
− ((1− v(t))(k + δ1H)

+ σ1 + µH + η1v(t))I1H
dI2H
dt

= (1− v(t))kI1H − ((1− v(t))δ2H + σ2

+ µH + η2v(t))I2H
dTH

dt
= (σ1 + η1v(t))I1H + (σ2 + η2v(t))I2H

− (e+ µH)TH

dM

dt
= (1−mu(t))NEγ1(I1H + αI2H)

− (µM + bdw(t))M

dSS

dt
= ΛS − β2MSH

M0 + εM
− µSSS − d1SS − bdw(t)SS

dIS
dt

=
β2MSH

M0 + εM
− (µS + d1 + bdw(t) + δS)IS

dP

dt
= (1− bw(t))γ2IS − (µP + bdw(t))P

(7)

and subject to initial conditions of the autonomous system (1). Us-
ing the Pontryagin’s Maximum Principle[26] with time interval [0, tf ],
where tf is the final time on the control functions, we determine the
duration for disease elimination for equation (7) with initial condi-
tions. The objective functional is given by

Γ(u, v, w) =

∫ tf

0

(ρ1I1H + ρ2I2H + ρ3NS

+ρ4M + ρ5P +
1

2
C1u

2(t) +
1

2
C2v

2(t)

+
1

2
C3w

2(t))dt

(8)
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subject to the system of differential equations (7). Here, C1, C2 and
C3 are the weights associated with the costs of control programs,
ρ1, ρ2, ρ3, ρ4 and ρ5 are positive weights to balance the factors of the
acute infected humans, chronic infected humans, total snail popula-
tion, miracidia and cercariae respectively while tf is the final time
for implementation of the control functions.

To minimise the number of infected humans, snail population,
miracidia and cercariae populations while minimising the cost of im-
plementing these controls u(t), v(t) and w(t), we seek an optimal
control, u∗(t), v∗(t) and w∗(t), such that

Γ(u∗, v∗, w∗) = min
(u,v,w)∈Ψ

Γ(u, v, w)

where Ψ = {u(t), v(t), w(t)|0 ≤ u(t) ≤ 1, 0 ≤ v(t) ≤ 1, 0 ≤ w(t) ≤
1, 0 ≤ t ≤ tf} is a bounded Lebesgue measurable control set subject
to equation (7) and initial conditions.
To determine the duration for disease elimination for equation (7)
with initial conditions using the Pontryagin’s maximum principle[26]
with time interval [0, tf ], the Hamiltonian, H, is defined by

H = ρ1I1H + ρ2I2H + ρ3NS + ρ4M + ρ5P
+1

2
C1u

2(t) + 1
2
C2v

2(t) + 1
2
C3w

2(t)

+Ω1(ΛH + eTH − (1−mu(t))β1PSH

P0+εP
− µHSH)

+Ω2(
(1−mu(t))β1PSH

P0+εP
− ((1− v(t))(k + δ1H)

+σ1 + µH + η1v(t))I1H) + Ω3((1− v(t))kI1H
−((1− v(t))δ2H + σ2 + µH + η2v(t))I2H)
+Ω4((σ1 + η1v(t))I1H + (σ2 + η2v(t))I2H
−(e+ µH)TH) + Ω5((1−mu(t))NEγ1(I1H
+αI2H)− (µM + bdw(t))M)

+Ω6(ΛS − β2MSS

M0+εM
− (µS + d1 + bdw(t))SS)

+Ω7(
β2MSS

M0+εM
− (µS + d1 + bdw(t) + δS)IS)

+Ω8((1− bw(t))γ2IS − (µP + bdw(t))P )



(9)

where Ω1,Ω2,Ω3,Ω4,Ω5,Ω6,Ω7,Ω8 are the adjoint variables of the
state variables, SH , I1H , I2H , TH ,M, SS, IS, P respectively. The con-
trol set Ψ is closed and convex following the approach in [27, 13].
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Theorem 5. Given the optimal control (u∗(t), v∗(t), w∗(t)) and solu-
tions S∗

H(t), I
∗
1H (t), I∗2H(t), T

∗
H(t),M

∗(t), S∗
S(t), I

∗
S(t), P

∗(t) of the cor-
responding state system (7) that minimises Γ(u(t), v(t), w(t)) over Ψ,
there exist adjoint variables Ω1,Ω2,Ω3,Ω4,Ω5,Ω6,Ω7,Ω8 that satisfy
the following systems of equations,

dΩ1

dt
=

(1−mu(t)∗)β1P
∗

P0 + εP ∗ (Ω1 − Ω2) + Ω1µH

dΩ2

dt
= −ρ1 + (Ω2 − Ω3)k(1− v∗(t)) + (Ω2

− Ω4)(σ1 + η1v
∗(t)) + Ω2((1− v∗(t))δ1H

+ µH)− Ω5(1−mu∗(t))NEγ1
dΩ3

dt
= −ρ2 + Ω3((1− v∗(t))δ2H + µH)

+ (Ω3 − Ω4)(σ2 + η2v
∗(t))− Ω5(1

−mu∗(t))NEγ1α

dΩ4

dt
= (Ω4 − Ω1)e+ Ω4µH

dΩ5

dt
= −ρ4 + Ω5(µM + bdw∗(t))

+ (Ω6 − Ω7)
β2S

∗
SM0

(M0 + εM∗)2

dΩ6

dt
= −ρ3 + Ω6(µS + d1 + bdw∗(t))

+ (Ω6 − Ω7)
β2M

∗

M0 + εM∗

dΩ7

dt
= −ρ3 + Ω7(µS + δS + d1 + bdw∗(t))

− Ω8(1− bw∗(t))γ2
dΩ8

dt
= −ρ5 + Ω8(µP + bdw∗(t))

+ (Ω1 − Ω2)
(1−mu∗(t))β1S

∗
HP0

(P0 + εP ∗)2



(10)

with transversality conditions

28



Ω1(tf ) = Ω2(tf ) = Ω3(tf ) = Ω4(tf )

= Ω5(tf ) = Ω6(tf ) = Ω7(tf ) = Ω8(tf ) = 0.
(11)

Also, the optimality conditions u∗(t), v∗(t) and w∗(t) are given by

u∗(t) = max{0,min(1, u∗
∗(t))}

v∗(t) = max{0,min(1, v∗∗(t))}
w∗(t) = max{0,min(1, w∗

∗(t))}

 , (12)

where

u∗
∗(t) =

1

C1

[(Ω2 − Ω1)S
∗
Hmβ1P

∗

P0 + εP ∗

+mγ1NEΩ5(I
∗
1H + αI∗2H)

]
,

v∗∗(t) =
1

C2

[(Ω3 − Ω2)kI
∗
1H + (Ω2

− Ω4)η1I
∗
1H + (Ω3 − Ω4)η2I

∗
2H

− Ω2δ1HI
∗
1H − Ω3δ2HI

∗
2H ],

w∗
∗(t) =

1

C3

[(Ω5M
∗ + Ω6S

∗
S + Ω7I

∗
S

+ Ω8P
∗)bd+ bΩ8I

∗
Sγ2].

(13)

Proof: The adjoint equation (10) is determined by differentiating
Hamiltonian function, H, with respect to SH , I1H , I2H , TH ,M, SS, IS,
and P and multiply by minus, that is

dΩ1

dt
= − ∂H

∂SH

,
dΩ2

dt
= − ∂H

∂I1H
,
dΩ3

dt
= − ∂H

∂I2H
,

dΩ4

dt
= − ∂H

∂TH

,
dΩ5

dt
= − ∂H

∂M
,
dΩ6

dt
= − ∂H

∂SS

,

dΩ7

dt
= −∂H

∂IS
,
dΩ8

dt
= −∂H

∂P

with respective transversality conditions of equation (8).
For the optimality conditions, ∂H

∂u
= 0, ∂H

∂v
= 0 and ∂H

∂w
= 0 is used to

solve for u∗(t), v∗(t), w∗(t) respectively on the interior of the control
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set,Ψ = {u(t), v(t), w(t)|0 ≤ u(t) ≤ 1, 0 ≤ v(t) ≤ 1, 0 ≤ w(t) ≤
1, 0 ≤ t ≤ tf} and this yield the optimal control characterization
(12).

The optimality system comprises of equations (7), the adjoint
system (10), initial conditions at t = 0, boundary conditions (11)
and the characterisation of the optimal control (12) with (13). Thus,
the optimal control can be computed using the optimality system.
Hence, using the fact that the second derivatives of the Hamiltonian
with respect to u, v and w respectively are positive indicates that the
optimal problem is minimum at control u∗, v∗ and w∗.

5 Numerical simulations and Discussion

Numerical simulations are carried out using parameter values in Ta-
ble 1 to illustrate the behaviour of the schistosomiasis transmission
dynamics with or without controls. The values for weight constants
and cost constants used in the simulations are ρ1 = 0.6, ρ2 = 0.4,
ρ3 = ρ4 = ρ5 = 0.2, C1 = 2 × 106, C2 = C3 = 2 × 104. The simula-
tions are implemented for the first 1000 days.

5.1 Discussion

The impact of implementing one control, two controls and all the
three controls on infected classes of model (1) are depicted in Figs.
5, 6 and 7 respectively. The controls are public health education
(u(t)), early diagnosis and treatment (v(t)) and snail control (w(t)).
In Fig. 5(a)-5(e), there is a significant reduction in the number of
infected human, miracidia and infected snail when only v(t) is carried
out when compared with only u(t) and only w(t) (see Fig. 5(a)-5(d)).
This effect is more on the chronic infected population as it reduces
them drastically to a minimum (Fig. 5b). Meanwhile, the implemen-
tation of only w(t) and only u(t) behave the same for infected human
population (see Fig. 5(a)-5(b)) while for the miracidia and infected
snail, implementing only u(t) is preferable to only w(t). Applying
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only w(t) in the population reduces cercariae population more than
as seen in other infected compartments. This reduction does not oc-
cur in infected snails population because the number of infected snail
depends on the amount of miracidia in the population which also
depends on the number of infected humans.
The application of two combined control measures on infected com-
partments are displayed in Fig. 6(a)-6(e). It is observed that im-
plementation of (u(t), (v(t)) reduces the number of infected classes
(I1H(t), I2H(t),M(t), IS(t), P (t)) in the population when compared
with other two combined controls, (u(t), w(t)) and (v(t), w(t)) while
the implementation of v(t), w(t)) lowers the infected classes more
than (u(t), w(t)). Furthermore, Fig. 7(a)-7(e) show a clear difference
between the implementation of all three controls and without control.
There is a reduction in the population of infected compartments when
the three controls are implemented. Fig 7(f) shows the control pro-
file for the three controls and their influence in reducing the disease
prevalence. The control, u is kept at maximum, 100%, for the first 50
days and declines gradually to 50% where it remains for the next 150
days before increasing to the upper bound which is maintained for
750 days and then gradually reduces to the lower bound at the final
time of implementation. For the control, v, it declines from the 100%
to 45% for the first 50 days before gradually increases and peaks at
50% where it gradually reduces to the lower bound at the final time
of implementation. The control, w is maintained at 100% for the
duration of implementation.
It could be observed from Figs. 5 and 6 that combined controls with
inclusion of early diagnosis and treatment, v(t), is important in the
control of schistosomiasis transmission which is supported by Kanyi
et al.[8]. Early diagnosis and treatment for the infected human will
prevent the mortality rate of this disease but this have to be com-
plemented with other controls. According to the WHO[15]. comple-
menting controls is important in eradicating the disease. So, imple-
menting public health education (u), early diagnosis and treatment(v)
and snail control (w) simultaneously will reduce the burden of the
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disease. However, some snail controls are toxic to other aquatic bod-
ies and it may be difficult to single out the chemical control that
will focus only on the snail population even though snails are special
food in Africa. Hence, it is preferable to implement public health
education and early diagnosis and treatment (u, v) simultaneously in
order to eradicate schistosomiasis transmission in the affected area.
This is support by work of Chiyaka and Garira[12] that advised that
intervention strategies should target snail to human transmission.

6 Conclusion

The dynamics of schistosomiasis disease transmission is analysed in
this research. The model has eight compartments divided into suscep-
tible human, acute infected human, chronic infected human, treat-
ment compartment, miracidia, susceptible snail, infected snail and
cercariae populations respectively. The stability analysis for the
disease-free and endemic equilibria are investigated in terms of basic
reproduction number, R0 and the model exhibits a forward bifurca-
tion. The sensitivity analysis for influence of the parameters on schis-
tosomiasis is examined using the PRCC. With the result of sensitivity
analysis, the optimal control model with public health education (u),
early diagnosis and treatment (v) and snail control (w)as controls
is developed and analysed. Through the numerical simulations, the
implementation of public health education (u), early diagnosis and
treatment(v) and snail control (w) simultaneously reduces the trans-
mission of the schistosomiasis in the population. However due to the
toxicity of some snail controls to water bodies, it will be advisable
to implement public health education (u) and early diagnosis and
treatment together.
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Figure 2: Forward bifurcation diagrams for I1H and IS as functions
of R0. All parameters are in Table 1.

Figure 3: Tornado plot showing the impact of model parameters on
the dynamics of the schistosomiasis model.
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Figure 4: Monte Carlo simulations for the six parameters with the
highest significant PRCC values, generated using the parameter val-
ues in Table 1. In each simulations run, 1000 simulations of the
randomly selected parameters were used.

Figure 5: Simulation results of the infected classes, I1H(t), I2H(t),
M(t), IS(t), P (t) with only one control. All parameter values of
Table 1 are used.
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Figure 6: Simulation results of the infected classes, I1H(t), I2H(t),
M(t), IS(t), P (t) with two controls. All parameter values of Table 1
are used.

Figure 7: Simulation results of the infected classes, I1H(t), I2H(t),
M(t), IS(t), P (t) with or without control measures and the control
profiles. W/C means with control measures while W/O/C means
without control measures. All parameter values of Table 1 are used.
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