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Abstract

Following the ideas given in [13]–[15], in this article we study a hy-
pothetical piecewise smooth modified Schnute growth function. Some
numerical examples, using CAS MATHEMATICA are also given.

1 The Schnute’s model. Introduction

Growth curves are found in a wide range of disciplines, such as biology,
chemistry and medical science. Estimating the lag time in the growth
process is a practically important problem [1], [2]. The lag time – tlag is
estimated by extending the tangent at inflection point to the initial baseline.
The Schnute curve [3] is described by free parameters, each contributing to
the characteristics of the curve: an initial lag or period of slow growth; a
period of rapid exponential growth; a period of reduced growth rate.

The Schnute function finds applications in many scientific fields, in-
cluding population dynamics, bacterial growth, population ecology, plant
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biology, chemistry and statistics. In his classical paper, Schnute [3] consid-
ered the model

L(t; l1, l2, a, b) =

(
lb1 +

(
lb2 − lb1

) 1− e−a(t−t1)

1− e−a(t2−t1)

) 1
b

. (1)

The values t1 and t2 are fixed and are normally taken to be the smallest
and largest diameters in the data. l1 = L(t1) and l2 = L(t2) are the initial
and final population densities, respectively (generally l2 > l1); a 6= 0 and
b 6= 0 are rate parameters. For a visualization of this model at fixed values
of the parameters: a, b, t1, t2, l

b
1, l

b
2, see Figs. 1–2.

For some details, see [4]–[10]. In his classical article, Schnute [3] consid-
ered the accelerated growth rate of species, and solved the model system:

dL

dt
= Lk,

dk

dt
= −k(a+ bk),

(2)

where parameters a and b are any constants.
Evidently

d2L

dt2
=

dL

dt
k + L

dk

dt

=
dL

dt
k − Lk(a+ bk)

=
dL

dt
k − dL

dt
(a+ bk)

=
dL

dt
(−a+ (1− b)k).

(3)

The basic form of this model is (1).
Example. We will observe the oil palm yield growth data.
The appropriate fitting of the experimental “oil palm yield data” [11],

[12] by the Schnute growth function L(t) with a = 0.58, b = 0.015, t1 = 5,
t2 = 17, l1 = 18.43, l2 = 38.45 is visualized on Fig. 3.

The question of studying the degree of saturation of the classes of sig-
moidal functions used in practice to the horizontal asymptote in the Haus-
dorff sense is extremely important. For example, the Hausdorff approxima-
tion [16] of the interval Heaviside step function h(t) by the growth Schnute’s
model is discussed in [10].
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Figure 1: The function L(t; l1, l2, a, b) for a = 0.0435, b = 0.1146, t1 = 0, t2 =
129, lb1 = 64.8, lb2 = 172.

Figure 2: The function L(t; l1, l2, a, b) for a = 1.2, b = 0.5, t1 = 0, t2 = 1, lb1 =
1, lb2 = 1.8.
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Figure 3: The appropriate fitting of experimental data by the Schnute growth
function L(t) with a = 0.58, b = 0.015, t1 = 5, t2 = 17, l1 = 18.43, l2 = 38.45 [10].

Figure 4: The solutions L(t) and k(t) for a = 1.1, b = 0.5 and κ = 1.
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Remark. We will explicitly note that interesting modifications of the
Schnute’s method can be obtained. It suffices to consider the following
hypothetical reaction network:

L+K
κ−→ L+ L

K
a−→ X

K +K
b−→ Y

(4)

wherein κ is the “rate constant”. For example see Fig. 4 for solutions L(t)
and k(t).

2 Another look at the modified Schnute’s model

In this section is discussed an alternative investigation of an analogue
of the Schnute’s growth model.

Definition 1. The growth function s1(t) of the special Schnute model
is defined for t ≥ 0 and A,B, k, r, b > 0 by:

s1(t) = B

(
1

2
+A

(
1− e−k(t−r)

)) 1
b

, (5)

for which s1(r) = B

(
1

2

) 1
b

;

lim
t→+∞

s1(t) = B

(
1

2
+A

) 1
b

:= B1.

In the light of the discussions in this paper, the researcher can achieve
saturation level

B2 = lim
t→+∞

B

(
1

2
+A

(
1− e

−k(t−r)
1+k(t−r)

)) 1
b

= B

(
1

2
+A(1− e−1)

) 1
b

if he uses, for example, the function

s2(t) = B

(
1

2
+A

(
1− e

−k(t−r)
1+k(t−r)

)) 1
b

.
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Figure 5: The functions s1(t), s2(t) and S(s1(t), s2(t)) for B = 1.3, A = 0.5, r =
0.1, b = 1.1, k = 5. Here B1 = 1.3, B2 = 1.08066.

Biomath Communications 9 (2022), 2205048, 10.55630/bmc.2022.05.048 6/11

https://doi.org/10.55630/bmc.2022.05.048


Figure 6: The functions s1(t), s2(t) and S(s1(t), s2(t)) for B = 1.2, A = 0.5, r =
0.1, b = 1.3, k = 10. Here B1 = 1.2, B2 = 1.0263.
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It is easy to see that the hypothetical piecewise smooth Schnute growth
model is of the form:

S(t) :=



B

(
1

2
+A

(
1− e−k(t−r)

)) 1
b

:= s1(t), t < r,

B

(
1

2

) 1
b

, t = r,

B

(
1

2
+A

(
1− e

−k(t−r)
1+k(t−r)

)) 1
b

:= s2(t), t > r.

(6)

Evidently,
s′1(r) = s′2(r).

The hypothetical piecewise smooth Schnute model S(s1(t), s2(t)) is de-
picted on Figs. 5–6. In addition, the reader can consider the interesting
problem of approximating the Heaviside step function

hr(t) =


0, if t < r,

[0, B2], if t = r,
B2, if t > r,

with the new class of growth functions S(s1(t), s2(t)) with respect to the
Hausdorff distance. In this regard, it is sufficient to use the methodology
given in [17].

2.1 Application

For the normalized cumulative data [11]–[12]:

DataSchnute ={DataSchnute1 ∪DataSchnute2}
DataSchnute1 :={{0.01, 0.05}, {0.02, 0.14}, {0.03, 0.17},

{0.05, 0.21}, {0.07, 0.3}, {0.1, 0.7}}
DataSchnute2 :={{0.1, 0.7}, {0.2, 0.89}, {0.8, 0.99},

{0.9, 0.995}, {1, 1.023}}

we will use model S(s1, s2):

s1(t) = B

(
1

2
+A

(
1− e−k(t−r)

)) 1
b

0 < t < r ≈ 0.1
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to approximate DataSchnute1 and

s2(t) = B

(
1

2
+A

(
1− e

−k(t−r)
1+k(t−r)

)) 1
b

, t > r

to approximate DataSchnute2.
For the actual data our model for

A = 0.5, k = 10, r ≈= 0.1, B = 1.2, b = 1.3

is depicted on Fig. 7.
The presented approach can be used successfully in the analysis of

grouped data. For other research, see [18]–[24].
In conclusion, we will note that the modified Schnute model discussed

in Section 2 and the disclosure of the intrinsic properties of this model, for
example as a degree of saturation, may be useful in fitting a variety of data
in the field of population dynamics.

Figure 7: The functions s1(t)–green and s2(t)–red.
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