
Theses and dissertations Biomath Communications 9 (2022)

B f

Biomath Forum

Biomath Communications

https://biomath.math.bas.bg/biomath/index.php/conference

Composite Numerical Methods and Scalable
Tile Algorithms

Dimitar Slavchev

Institute of Information and Communication Technologies,
Bulgarian Academy of Sciences, Bulgaria

dimitargslavchev@parallel.bas.bg 0000-0002-2102-826X

Abstract

Numerical modeling is an important tool when studying various natu-
ral processes and phenomena. Fractional diffusion can be used for model-
ing many processes in biology, for example in silico experiments in molec-
ular biology and medicine design, protein diffusion within cells, complex
media geometry, etc. The problem is usually reduced to a system of
linear algebraic equations and in many cases this system has a dense co-
efficient matrix. Numerically solving such problems with the traditional
LU factorization is a computationally expensive endeavour – O(n3). In
this paper we explore the use of a hierarchical compression method based
on Hierarchical Semi-Separable compression and ULV-like factorization
from the STRUctured Matrices PACKage (STRUMPACK) software li-
brary for a flow around airfoils problem discretized with Boundary Ele-
ment Method and fractional diffusion problem discretized with the Finite
Element Method. The HSS based method promises better overall com-
putational complexity of O(r2n) for problems with suitable structure –
low rank off-diagonal blocks. Here r is the maximum rank of the off-
diagonal blocks. We present analysis of the performance and accuracy of
the HSS based method and compare it with the state of the art direct LU
factorization solvers.

This paper is based on the PhD thesis “Composite Numerical Meth-
ods and Scalable Tile Algorithms” of the author defended on 17.05.2022
in the Institute of Information and Communication Technologies at the
Bulgarian Academy of Sciences.

Keywords: Anomalous Diffusion, Boundary Element Method, Finite Ele-

ment Method, Fractional Laplacian, Hierarchically Semi-Separable Compression,

STRUMPACK

Copyright: © 2022 Dimitar Slavchev. This article is distributed under the terms of the
Creative Commons Attribution License 4.0, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original author and source are credited.
Received: July 6, 2022, Accepted: August 15, 2022, Published: November 15, 2022
Citation: Dimitar Slavchev, Composite Numerical Methods and Scalable Tile Algorithms,
Biomath Communications 9 (2022), 2208159, https://doi.org/10.55630/bmc.2022.08.159

https://biomath.math.bas.bg/biomath/index.php/conference
mailto:dimitargslavchev@parallel.bas.bg
https://orcid.org/0000-0002-2102-826X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.55630/bmc.2022.08.159

1 Introduction

Numerical solutions of large-scale problems require the use of high-perfor-
mance computer systems, as well as specialized hardware and software – graph-
ics cards, accelerators, high-speed communication between the system’s servers,
software standards and packages for communication between processor cores,
GPUs/accelerators and nodes, software packages implementing effective numer-
ical methods and much more.

There are a number of methods for discretization of differential equations; for
example, the mesh methods such as finite element method, boundary elements
method and finite differences method. After applying such methods the problem
is reduced to solving large systems of linear equations. The Gaussian eliminated
is the universal method for solving such problems. In the general case it has
high computational complexity – O(n3), where n is the number of unknowns [1].

When the discretization of the differential equation is carried out with the
boundary element method or when the finite element method is applied to
non-local problems (such as the examined in this paper anomalous (fractional)
diffusion) [2], the arising matrix is dense. One way of lowering the computa-
tional complexity of solving problems with such matrices is the application of
hierarchical compression introduced by Hackbusch [3]. With this method the
structure of the matrix is utilized. The aim is to reduce the required mem-
ory and to improve the computational complexity. Here the term dense matrix
structure is understood as the presence of low-rank off-diagonal blocks. This
property allows the representation of the off-diagonal blocks as the product of
smaller matrices. There are several types of hierarchical matrices: H [3], H2 [4],
Hierarchically Semi-Separable (HSS), etc.

This paper is based on the abstract [5] of the PhD thesis [6].

1.1 Overview of key results in the field

The huge progress in the capabilities of modern high-performance computing
systems further underlines the role of efficient numerical methods and parallel
algorithms. Supercomputer simulations are crucial for development in a number
of advanced areas. Examples are in silico molecular biology and medicine design
[7, 8], analysis of turbulent flows [9], non-destructive testing [10], 3D image
processing [11], fluid dynamics [12] and many others.

After suitable discretization, the mathematical models are usually reduced to
problems of linear algebra, among which central role has the solution of systems
of linear algebraic equations. For this purpose specialized software tools are
developed.

In the general case variants of the Gaussian method are employed in order to
solve systems of linear algebraic equations with dense matrices. Such methods
utilize the sequential elimination of the unknowns. In general, the dense matrix

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 2/41

https://doi.org/10.55630/bmc.2022.08.158

is thought to be homogeneous, as it is not assumed to contain zeros. The
Gaussian elimination method has computational complexity O(n3). In this
work an alternative approach based on hierarchical compression is investigated.
The goal is to reduce the computational complexity of the solution process.
Here by structure of dense matrices we understand the existence of low-rank
off-diagonal blocks. More to the point, such property is found in a matrix
approximating the original. The existence of such suitable structure is the basis
of the hierarchical compression and the arising methods for solving systems of
linear algebraic equations for classes of computational mathematics problems.
Hierarchical compression is introduced by Hackbusch in [3], where the so-called
H-matrices are studied. Other types of hierarchical compression areH2-matrices
[4] and hierarchical semi-separable matrices (HSS) [13]. A theoretical basis for
HSS compression methods can be found in [14].

A large part of this paper is dedicated to the numerical solution of fractional
diffusion problems. Fractional (also known as anomalous) diffusion describes
non-local processes observed in different physical and social media. Unlike ordi-
nary (local) diffusion, anomalous diffusion includes the so-called fast transitions
or tunnel effects. Various examples of mathematical models have been published
in the literature for processes and phenomena described by fractional diffusion.
Some examples are: flows in strongly non-homogeneous porous media, super-
conductivity, diffusion of polymers in supercold media [15]; electrodiffusion of
ions into nerve cells [16] and photon diffusion diagnostics [17]; image processing
and machine learning [18]; spread of viral diseases, computer viruses and crime
[19]. The fractional Laplace operator describes anomalous diffusion in space.
There are different definitions of the fractional Laplacian. It is important to
note that they are not equivalent. For example, in [20] the difference between
integral and spectral definitions is studied (see also articles [21] and [22] and the
literature in them).

1.2 Goals and objectives of this work

The major goals of this paper are:

• Comparative analysis of the performance and parallel speedup of fre-
quently used software packages applying direct Gaussian elimination for
solving systems of linear algebraic equations with dense matrix on CPUs
and accelerators (MICs).

• Analysis of the performance, parallel speedup and accuracy of an approx-
imate method for solving systems of linear algebraic equations based on
hierarchical semi-separable compression from the STRUMPACK software
package for systems with suitable structure.

• Development of reordering algorithms for the unknowns for systems of
linear algebraic equations arising from discretization with finite element

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 3/41

https://doi.org/10.55630/bmc.2022.08.158

method of fractional diffusion. The reordering is aimed at improving the
effectiveness of hierarchical semi-separable compression when applied on
the stiffness matrix.

• Numerical solution of elliptic and parabolic problems in the field of frac-
tional diffusion, modeled with the integral formulation of the fractional
Laplacian and discretized with finite elements.

1.3 Research methodology

In this paper we analyze the effectiveness, in terms of performance, parallel
speedup and accuracy (for approximate solutions), of tile methods for solving
dense systems of linear algebraic equations. For this purpose, software packages
are used, in which the studied methods are applied.

For the problem, examined in Section 3 we utilize the parallel program devel-
oped in [23] for the discretization and generation of the system of linear algebraic
equations. For the fractional diffusion problems, examined in Sections 4 and 5,
the MatLab program developed in [2] is used for the generation of the system of
linear algebraic equations. We developed MatLab programs for the calculation
of the reordering schemes [24–26] and the lumped matrix of mass [27].

1.4 Content structure

Section 1 provides the motivation for the current work and a short descrip-
tion of the methods and problems.

Section 2 has an introductory character and describes the utilized tile meth-
ods for solving dense systems of linear algebraic equations, as well as an es-
timation of their computational complexity. In Subsection 2.1 we provide a
short description of the universal direct method Gaussian elimination and the
LU factorization based on it. Subsection 2.4 examines the hierarchical methods
for solving systems of linear algebraic equations, developed for solving systems
with structured matrices (both dense and sparse). The advantages of HSS com-
pression are also described – lower computational complexity for problems with
suitable matrix structure.

Section 3 presents numerical results for laminar flow around Joukowsky air-
foils. The arising system has a dense matrix and is used as a benchmark for the
comparative analysis of the studied tile algorithms.

In Section 4 we examine a two dimensional anomalous diffusion problem
modeled with the fractional Laplace operator. Finite element method is utilized
for the discretization in time.

Section 5 examines a parabolic in time problem for two dimensional anoma-
lous diffusion.

Section Conclusion presents the concluding remarks summarizing the results
obtained in this work.

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 4/41

https://doi.org/10.55630/bmc.2022.08.158

2 Methods for solving systems of linear algebraic
equations with dense systems

Many problems in the calculation practice are solved numerically by reduc-
tion into a system of linear algebraic equations. For example, when utilizing the
boundary element method or the finite element method on a fractional power
Laplace operator (fractional diffusion), the arising system has a dense coefficient
matrix.

2.1 Direct methods

Gaussian elimination is an universal method for solving systems of linear
algebraic equations. It is the basis of most direct methods. For example, the
LU factorization is based on the sequential elimination of unknowns in the Gauss
method. The LU factorization is a primary method, implemented in the high
performance software libraries for computational linear algebra.

2.2 Gauss method

The Gauss method for solving systems of linear algebraic equations Ax = b
involves two parts: (i) Forward elimination. Applies elementary row operations
to transform the system into one with an Upper triangular matrix; (ii) Back
substitution. Recursively in reverse order the off-diagonal elements in the i-th
row of the matrix are eliminated for i = n− 1, n− 2, . . . , 1.

The computational complexity of the Gauss method is determined by the
forward elimination [1]:

NGauss ∼ 2n3

3
= O(n3).

2.3 LU factorization

The LU factorization is expressing the matrix A as a product of two triangle
matrices A = LU . Here L is a lower triangular matrix with ones on the main
diagonal, and U is an upper triangular matrix. This factorization is calculated
with a modified Gaussian elimination and is used in high performance libraries
(LAPACK, MKL, ACML, PLASMA, ATLAS, etc.) for solving systems of linear
algebraic equations.

The forward elimination can be written as

Ln−1Ln−2 . . . L2L1︸ ︷︷ ︸
L̃

A = U,

where L1, L2, . . . , Ln−1 are lower triangular matrices with ones on the main
diagonal. We can check that L̃ and L = L̃−1 are also lower triangular matrices

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 5/41

https://doi.org/10.55630/bmc.2022.08.158

with ones on the main diagonal. Thus:

L̃A = U ⇐⇒ A = LU, L = L̃−1.

After factorization of A, the system of linear algebraic equations is reduced
to solving two systems with triangular matrices. We denote

L Ux︸︷︷︸
y

= b,

afterwards we will:

1. Solve the system Ly = b with forward substitution;

2. Solve the system Uy = y with backward substitution;

The numerical complexity of the factorization is O
(

2
3n

3
)
, while the forward

and backward substitutions have – O
(
n2
)
.

2.4 Hierarchical matrices. Methods for solving systems of linear al-
gebraic equations with hierarchical semi-separable compression

Hierarchical semi-separable matrices is applied for the approximation of
data-sparse matrices. By data-sparse we understand such matrices that have
structure that allows approximation by compressed matrices, which could be
expressed with lower amount of elements. In the general case the data-sparse
matrices do not satisfy the condition to have O(n) nonzero elements. Hackbusch
introduced the term Hierarchical matrices in [3] by developing the theory and
algorithms for the so called H-matrices.

Methods utilizing hierarchical matrices are a part of the wider group of meth-
ods for solving systems with the so called structured matrices. An overview of
the existing methods for such methods can be found inside [28], including hier-
archically semi-separable matrices. in this work we will examine the efficiency
of algorithms based on this class of methods.

STRUMPACK (STRUctured Matrices PACKage) is a parallel software li-
brary, that implements hierarchical semi-separable compression for solving dense
systems of linear algebraic equations [29]. The algorithm involves three steps:

1. Hierarchically semi-separable compression (approximation) of the matrix
of the system. When certain conditions are satisfied this step has com-
putational complexity of O(r2n), where r is the maximum rank of the
off-diagonal blocks of the approximating matrix. It is calculated during
the compression. In the general case the complexity is O(rn2).

2. ULV-like factorization. In this step the compressed matrix is factorized.
For this step a variant of the Gauss method is applied, similar to the

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 6/41

https://doi.org/10.55630/bmc.2022.08.158

one described in the LU factorization above. First O(r) unknowns are
eliminated, then the rest of the O(n − r). Computational complexity of
this step is O(r2n).

3. Solution. In this step the compressed and factorized matrix is used along
the right hand side to obtain the solution. Computational complexity is
O(rn).

The overall computational complexity of the method is O(r2n). As seen
later this evaluation is valid for certain assumptions. In the general case the
complexity is O(rn2).

Hierarchical Semi-Separable compression. In this subsection we will ex-
amine in short the hierarchical semi-separable matrices (HSS). They are first
introduced by Martinsson in [13]. Algorithms implementing it are described in
[29] as a part of the STRUMPACK project, for solving systems of linear alge-
braic equations with dense matrices. Hierarchical compression may be applied
to any non-singular matrix, however it is effective only if the original matrix A
has suitable structure – meaning that its off-diagonal blocks have low rank. By
effective compression we mean one that approximates the matrix, such that the
memory needed to store it is much lower and we can apply transformations on
the compressed matrix with lower computational complexity.

We will denote the compress matrix of A with H. The algorithm could be
written as:

1. We divide the matrix A in four blocks. We assume that the off-diagonal
blocks have low rank (and Singular Value Decomposition, or another rank cal-
culating factorization, can be applied to them):

A =

[
A1,1 A1,2

A2,1 A2,2

]
=

[
D1 Ubig

1 B1,2V
big
2

∗

Ubig
2 B2,1V

big
1

∗
D2

]
.

The matrices U , B and V are called generators. If the off-diagonal blocks
have low rank, U will be “tall and slim”, B will be small and square (or close to)
and V will be “short and wide”. The relation between rows and columns will
depend on the rank r. D are unchanged diagonal blocks. The “big” notation
will be described below.

2. Assuming, that the diagonal blocks D also have off-diagonal low rank
blocks, they are compressed in the same fashion, the process continues recur-
sively. The second level of recursive compression can be written as:

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 7/41

https://doi.org/10.55630/bmc.2022.08.158

A =

[

D1 Ubig
1 B1,2V

big
2

∗

Ubig
2 B2,1V

big
1

∗
D2

]
Ubig

3 B3,6V
big
6

∗

Ubig
6 B6,3V

big
3

∗
[

D4 Ubig
4 B4,5V

big
5

∗

Ubig
5 B5,4V

big
4

∗
D5

]

3. There is a recursive property between the generators of different levels of
compression. This is denoted with the “big” notation. The following relations
apply

Ubig
3 =

[
Ubig

1 0

0 Ubig
2

]
U3 and V big

3 =

[
V big

1 0

0 V big
2

]
V3 (1)

The third level of recursive HSS compression can be written as:

A = (2)

[
D1 Ubig

1 B1,2V
big
2

∗

Ubig
2 B2,1V

big
1

∗
D2

] [
Ubig
1 0

0 Ubig
2

]
U3B3,6V ∗

6

[
V big
4

∗
0

0 V big
5

∗

]
[
Ubig
4 0

0 Ubig
5

]
U6B6,3V ∗

3

[
V big
1

∗
0

0 V big
2

∗

] [
D4 Ubig

4 B4,5V
big
5

∗

Ubig
5 B5,4V

big
4

∗
D5

]

Generators with the notation “big” can be computed outside of the highest
levels of recursive compression. U can be computed from the Uτ and Ubig at
the higher level of compression. At the last level U = Ubig.

In the general case equation 2 is approximate. This means that as a result
we obtain an approximation of A, that we will denote as H ≈ A.

To achieve this a suitable threshold ε must be supplied. It is necessary
for the calculation of the generators. When a larger threshold is used, the
generators are smaller and the compressed matrix takes less memory and allows
more effective arithmetic operations with it, but this is at the price of lower
accuracy. If a smaller threshold is chosen it is exactly the opposite.

As we will show in the later sections, the ordering of the unknowns while
assembling the matrix A is pivotal for the effectiveness of the HSS compression.
If A is scrambled randomly, that will almost assuredly destroy any suitable for
this method structure.

For certain classes of problems it is possible to reorder the unknowns in such
a way, that the arising structure of the matrix is improved. For example, in [30],
several methods for clusterization are studied for Kernel Ridge Regression. In
Section 4 we will propose and analyze several methods for reordering of the un-
knowns for a system of linear algebraic equations, arising from the discretization
of an elliptic problem with a fractional power of the Laplace operator (fractional
diffusion problem).

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 8/41

https://doi.org/10.55630/bmc.2022.08.158

at parent

Figure 1: ULV-like factorization.

Compression with randomized sampling. The HSS algorithm deployed
in STRUMPACK is based on applying randomized sampling, which utilizes
multiplication of random vectors with the original matrix A. This method is first
proposed by Martinsson in [13]. Instead of the explicit form of A a function that
accesses (or calculates on demand) and another one that calculates a product
of A with a vector can be used. The advantages of this approach, as well as
an adaptive random sampling algorithm are studied by Gorman et al. in [31].
The Randomized sampling is also useful when integrating HSS kernels in sparse
solvers [32].

In the general case the computational complexity of a matrix-vector product
is O(n2). This leads to O(rn2) for the HSS compression algorithm. For certain
classes of problems r is much smaller than r. For example, for 2D Poisson
problems (FEM) r is a constant, while for 3D Helmholtz (BEM) it rises slowly
with n. If a fast algorithm (O(n)) for multiplying the compressed matrix with a
vector is supplied, the complexity of the compression can be lowered to O(r2n).

ULV-like factorization and solution. The compressed matrix H in HSS
form can be factorized with a special form of LU factorization known as ULV
factorization [33]. This factorization uses orthogonal transformations to first
eliminate n − r. The rest r unknowns are then eliminated with LU factoriza-
tion. The factorization employed inside STRUMPACK is realized as ULV-like
factorization, that instead of using orthogonal transformations utilizes the HSS
structure of the compressed matrix H. The complexity of this step is O(r2n)
This process is visualized in Figure 1.

After applying the ULV-like factorization, the system of linear algebraic
equations Ax = b is reduced to solving two systems with triangular matrices.
The computational complexity of this step is O(rn) [29].

3 Boundary Element Method for numerical solution of a
two dimensional flow around airfoils problem

This section studies a numerical method for a computational simulation
of laminar flow around Joukowsky airfoils. This work employs the method
described in [34]. We have developed an implementation for a cascade of airfoils

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 9/41

https://doi.org/10.55630/bmc.2022.08.158

in ideal fluid. The method is based on spline collocation with interpolation in
parts. A parallel C program is developed in [23] for this problem.

After discretization of the integral equation with the boundary element
method the problem is reduced to a dense system of linear algebraic equa-
tions. The results from the studied in the paper hierarchical method are com-
pared with results obtained with Gaussian elimination, implemented in several
popular software packages. On the CPUs we compare the performance of Intel
Math Kernel Library (MKL) and Parallel Linear Algebra for Scalable Multi-core
Architectures (PLASMA), while on the Intel Xeon Phi coprocessors (abbrevi-
ated as MICs from the Many Integrated Core architecture) the performance of
MKL is compared with Matrix Algebra on GPU and Multicore Architectures
(MAGMA) for MIC architecture (abbreviated as MAGMA MIC).

Results presented in this Section are published in [35–37].

3.1 Problem statement

3.1.1 Boundary Element Method calculating the flow function in an
ideal fluid in unbounded two dimensional domain

Let Ω ⊂ R2 be an unbounded multi-connected domain with a smooth enough
internal border S. The flow function Ψ satisfies the Laplace equation:

∇2Ψ ≡ ∂2Ψ

∂x2
+
∂2Ψ

∂y2
= 0 (3)

in Ω ⊂ R2 and can be written as

Ψ(P) = − 1

4π

∫
S

γ(σ) ln
(
r2(P,Q)

)
dσQ + Ψ∞(P) + C0, P ∈ Ω. (4)

where r2(P,Q) = (x − ξ)2 + (y − η)2, P = (x, y), Q = (ξ, η) and dσQ is a
measure on S. The first term on the right hand side represents a simple layer
(stream function of the vortex layer), where γ(σ) is the density of the layer, Ψ∞
is a harmonic function added to the potential of the layer in order to satisfy
the condition at infinity for external boundary problems. The velocity field−→
C = (u, v) is defined by

u =
∂Ψ

∂y
, v =

∂Ψ

∂x

satisfying the equations

u =
1

2π

∫
S

γ(σ)
y − η
r2

dσ, v = − 1

2π

∫
S

γ(σ)
x− ζ
r2

dσ.

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 10/41

https://doi.org/10.55630/bmc.2022.08.158

3.1.2 Fluid flow around airfoils

In this section we will examine the problem of fluid flow around Joukow-
sky airfoils. We assume that the flow at infinity has homogeneous velocity−→
C∞ = (1, 0). Here S denotes the contours of the airfoils. For the examined
problem the flow function Ψ satisfies the Laplace equations (3). The airfoils S
are impermeable, therefore the following boundary condition is in force Ψ|S =

K = const. In order to satisfy the conditions at
−→
C∞, we should choose Ψ∞

such that
−→
C∞ =

(
∂Ψ∞
∂y

,−∂Ψ∞
∂x

)
.

Here, we have
Ψ∞(P) = γ∞(P).

The boundary condition takes the form

γ(P)− 1

4π

∫
S

γ(σ) ln
(
r2(P,Q)

)
dσQ + C = 0. (5)

Finally, the Kutta-Joukowsky’s condition γ(A) = 0, is used to obtain a
unique solution of the boundary value problem, where A are the points on the
sharp tip of the airfoils.

3.1.3 Discretization

For the numerical solution of the integral equation (5) we apply the boundary
element method. The problem is reduced to a system of linear algebraic equation
of the form:

(Aγ) s = f(s).

We look for a numerical solution

γh(S) =

n∑
i=1

γiφi(s),

where {φi(s)}ni=1 is the Lagrangian basis, corresponding to the discretization
mesh Sh on the airfoils and γi = γh (si) , i = 1, . . . , n are the BEM nodal un-
knowns. The collocation method is applied to the mid points of the boundary
elements from Sh. Following [23] we obtain the system of linear algebraic equa-
tions

n∑
i=1

γiΨji = fj , j = 1, 2, . . . , n, (6)

where Ψji = Ψi(sj), f(sj) = fj ,Ψi(s) = (Aφi)(s).

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 11/41

https://doi.org/10.55630/bmc.2022.08.158

Table 1: Sequential and parallel execution times on CPU processors with shared mem-
ory.

Library PLASMA+ATLAS PLASMA+MKL MKL

Threads n time [s] speedup time [s] speedup time [s] speedup

1 5 000 8.42 1.00 5.03 1.00 5.30 1.00
16 5 000 0.67 12.57 0.47 10.69 0.47 11.26
32 5 000 0.88 9.59 0.65 7.76 0.65 8.12
1 40 000 4008.76 1.00 2497.12 1.00 2233.93 1.00

16 40 000 282.94 14.17 166.41 15.01 147.64 15.13
32 40 000 325.17 12.33 169.58 14.73 148.59 15.03

3.2 Analysis of numerical experiments on computers with shared
memory

Computing the matrix D has computational complexity O(n2). The calcu-
lation of drag and lift forces have complexity O(n). The focus of this work is
on the most computationally complex part – the solving of the system of linear
algebraic equations.

3.2.1 LU factorization

CPU processors with shared memory. PLASMA (Parallel Linear Alge-
bra Software for Multicore Architectures) [38] is a software library for solving
systems of linear algebraic equations implementing the standard LAPACK li-
brary. The effectiveness of PLASMA is based on using highly optimized BLAS
library (Basic Linear Algebra Subprograms) in which the basic linear algebra
operations are implemented – vector, matrix-vector and matrix-matrix multi-
plications. For this level of computation we employ the libraries MKL BLAS
and ATLAS (Automatically Tuned Linear Algebra Software) BLAS [39].

On Table 1 we present the results of the numerical experiments for solving
systems of linear algebraic equations obtained when applying the boundary
element method for discretization of a flow around airfoils problem. We compare
the sequential and parallel execution times for PLASMA + ATLAS, PLASMA
+ MKL and MKL solvers for n = 5 000 and n = 40 000 and varying the number
of threads used.

The results show good parallel speedup for all tested libraries up to 16
threads. The speedup achieved comes close to 15, which is close to the the-
oretical maximum of 16.

The parallel effectiveness of PLASMA with MKL and MKL is quite similar,
increasing up to 94% for the larger problem. They outperform more than 1.5
times PLASMA with ATLAS. One possible reason for this could be that the
gcc compiler doesn’t employ vectoring as well as icc.

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 12/41

https://doi.org/10.55630/bmc.2022.08.158

Table 2: Sequential and parallel times and speedup for solving systems of linear alge-
braic equations on MIC coprocessors.

Library MAGMA MIC MKL

Threads n time [s] speedup time [s] speedup

1 5 000 11.70 1.00 17.64 1.00
60 5 000 5.81 2.01 2.86 6.16

120 5 000 6.76 1.73 3.55 4.97
240 5 000 5.39 2.17 3.80 4.64

1 40 000 4896.49 1.00 2101.93 1.00
60 40 000 665.53 7.36 154.23 13.63

120 40 000 432.89 11.31 93.80 22.41
240 40 000 208.48 23.49 64.43 32.62

(a) Sequential (b) Parallel with 16 threads

Figure 2: Comparison of the performance of LU solvers for CPU and MIC.

(a) Sequential (b) Parallel with 16 threads

Figure 3: Performance of STRUMPACK in comparison with MKL.

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 13/41

https://doi.org/10.55630/bmc.2022.08.158

MIC coprocessors. In this subsection we analyze the parallel effectiveness
of the Intel Xeon Phi 7120P accelerators (MICs). The MICs are designed for
massive parallelism and vectorization as required in High Performance comput-
ing. Every MIC has 61 cores and each core can run 4 threads simultaneously
for a total of 244 threads. We use the Offload mode which reserves one of the
cores for communication with the CPU, thus we can use up to 60 cores (240
threads).

On Table 2 we present the results from numerical experiments with sizes
n = 5 000 and n = 40 000, varying the number of threads from 1 to 240. The
results show very good performance of MKL in comparison with MAGMA MIC.
This may be because of better communication between the threads in MKL. For
the biggest problem we achieve parallel speedup of 32.

On Figure 2 we compare the performance of the studied software libraries for
the CPU and MIC architectures. The performance of PLASMA with MKL is
better than that of MAGMA MIC. That may be due to better communication.

In conclusion we note that the MKL package has better performance both
in the CPUs and the MIC coprocessor. The best time on the coprocessor is 4
times faster than the best on the CPU.

3.2.2 Hierarchical Semi-Separable compression

The Hierarchically Semi-Separable compression, implemented in the software
library STRUMPACK is approximate. This means that the compressed matrix
H approximates the original matrix A. The user must provide two thresholds
– absolute εabs and relative εrel [31]. In the results presented on this paper
we fix the absolute threshold at εabs = 10−8 and vary the relative one εrel =
10−2, 10−4, 10−6, 10−8 and 10−12.

Comparative analysis of hierarchical and LU factorization on CPUs
with shared memory. In this subsection we analyze the performance of the
HSS compression method and its software implementation in STRUMPACK
in comparison with Gaussian elimination and its best (based on the analysis
above) implementation MKL, where we use LU factorization. The sequential
Figure 3a and parallel times Figure 3b are presented. The results affirm the
better computational complexity of the HSS compression O(rn2) in comparison
to the LU factorization O(n3). The impact of the relative threshold εrel can be
seen clearly.

For the sequential experiments STRUMPACK is more efficient than the best
direct solver employed – MKL. STRUMPACK shows lower parallel speedup –
around ∼2 to ∼5. This is due to the more complex recursive structure of the
HSS compression.

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 14/41

https://doi.org/10.55630/bmc.2022.08.158

Table 3: Relative accuracy Rrelative.

εrel
n 10−6 10−8 10−12

5005 1.1 0.085 0.00019

15005 0.29 0.23 0.00097

20005 0.28 0.34 0.0038

25005 0.3 1.48 0.013

10005 0.75 0.17 0.00075

40005 0.37 1.59 0.027

Error analysis for the HSS-based solver. Let us remind that the HSS
compression is approximate, i.e. the compressed matrix H is an approximation
of A. The solution of the system of linear algebraic equations, obtained with
HSS compression, is thus an approximation of the exact solution. In order to
estimate the error of the method we use the solution obtained with the LU
solver as a reference (see Subsection 3.2.1). Here we analyze the relative error
Rrelative with the following definition:

Rrelative =

∥∥xGauss − xHSS
∥∥
l2

‖xGauss‖l2
=

√∑n
i=1(xGauss

i − xHSS
i)2√∑n

i=1(xGauss
i)2

, (7)

where xGauss is the reference solution obtained with the MKL solver, while xHSS

is the solution obtained with HSS compression.
On Table 3 we show the relative errors Rrelative, varying the size of the

problem n ∈ {5 005, 10 005, 15 005, 20 005, 25 005, 40 005}, as well as the relative
thresholds εrel ∈ {10−6, 10−8, 10−12}.

The accuracy and computational effectiveness of the hierarchical method
rely on the max rank of the off-diagonal blocks r, which is in turn dependent on
the chosen error thresholds and the structure of the original matrix A. Higher
rank r will result in smaller relative error Rrelative as well as longer solution time
and vice versa.

The analysis of the presented results shows that in order to achieve high
accuracy for the method we require very small threshold corresponding to higher
rank r. In these case HSS compression may not be sufficiently effective.

3.3 Parallel scalability on computer systems with
distributed memory

This section is concentrated on some specifics and hardships when working
with HPC systems with hybrid architecture. Those machines have distributed

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 15/41

https://doi.org/10.55630/bmc.2022.08.158

(a) Rank r (b) Relation r/n

Figure 4: Maximum off-diagonal rank r.

memory on the server level and shared memory on each server. As in the pre-
vious section the comparative analysis includes the parallel libraries MKL and
STRUMPACK. In order to solve the system of linear algebraic equations, aris-
ing from the BEM discretization of flow around Joukowsky airfoils, we employ
one or two servers connected with Ethernet. We analyze the following variants
with MKL and STRUMPACK: Sequential; Parallel with 24 OpenMP threads;
Parallel with 24 MPI processes on 1 server; Parallel with 48 MPI processes on
2 servers; Hybrid parallelization with 2 MPI processes on 2 servers, each with
24 OpenMP threads.

3.3.1 LU factorization

On Figure 5 we show the execution times for solving the system of linear
algebraic equations with MKL. The best times are obtained when using a single
server with OpenMP, followed by MPI Figure 5b. This is explained by the
slower Ethernet communications when employing more than a single server.

3.3.2 HSS compression

When solving the system with HSS compression, the obtained parallel speed-
up is lower than when using the direct Gaussian solver Figure 6. This can be
explained with the recursive structure of the HSS compression.

In the numerical experiments with the lowest relative threshold εrel we obtain
the best computational time when using MPI on a single server. This could likely
be explained by the fact that OpenMP parallelization is implemented later than
the MPI optimization.

The behavior of the parallel speedup is drastically changed when employing
two servers. This is due to the much slower (relatively) connection between them
– 1000 Mb Ethernet. We can conclude that effectiveness could significantly

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 16/41

https://doi.org/10.55630/bmc.2022.08.158

(a) MKL times (b) MKL parallel speedup

Figure 5: Parallel times and speedup with MKL.

(a) STRUMPACK times with
εrel = 10−2

(b) STRUMPACK times with
εrel = 10−4

(c) STRUMPACK times with
εrel = 10−6

(d) STRUMPACK times with
εrel = 10−8

Figure 6: Times and parallel speedup for STRUMPACK.

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 17/41

https://doi.org/10.55630/bmc.2022.08.158

be improved with faster communication medium, like InfinBand, as well as
increasing the size of the solved systems of linear algebraic equations.

3.4 Concluding remarks

Central part in the presented results is given to the examination of the Hier-
archically Semi-Separable compression method. The experimental comparative
analysis is based on the implementation in the STRUMPACK package. It shows
much better performance than the Gaussian solvers, utilizing LU factorization.
At the same time the parallel speedup of STRUMPACK is found lacking. This
is explained with the more complex hierarchical structure of the algorithm.

The accuracy and computational effectiveness of the HSS compression de-
pends on the choice of the absolute and relative thresholds. These parameters
must be determined by the user. The presented analysis shows how to achieve
best performance with the given accuracy.

4 Finite Element Method for numerical solution of a two
dimensional fractional diffusion problem

The fractional elliptic in space problems of power α ∈ (0, 1) are utilized
in modeling anomalous diffusion problems. The arising boundary problems
are non-local and in the general case the numerical solution of such problems
is an extremely computationally expensive process. Such models are used in
image processing, financial mathematics, electromagnetostatics, peridynamics,
modeling flow in porous media and many others.

The presented numerical experiments are for model problems in a square
domain. The fractional Laplacian is defined through the Riesz potential. The
theoretical basis and the specialized finite element method for its numerical
solution can be found in [40] by Acosta et. al. The algorithmic implementation
of the method can be found in [2] from the same authors.

The performance of several software packages implementing Gaussian elim-
ination was analyzed in Section 3. Here we will use only the most effective
of them: Intel’s Math Kernel Library (MKL). In this section we will analyze
the performance of the HSS compression based algorithm, implemented in the
STRUMPACK library. We will employ several reordering schemes in order to
improve the structure of the stiffness matrix.

Results presented in this Section are published in [24–26].

4.1 Problem Statement

The fractional Laplacian can be defined as

(−∆)
α
u(x) = C(d, α) P.V.

∫
Rn

u(x)− u(y)

|x− y|d+2α
, (8)

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 18/41

https://doi.org/10.55630/bmc.2022.08.158

where P.V. means principal value, d is the number of dimensions, α ∈ (0, 1).
The normalized constant C(d, α) can be written as

C(d, α) =
22ααΓ

(
α+ d

2

)
πd/2Γ(1− α)

,

where Γ is the gamma function.
In this section we utilize the integral definition of the fractional Laplace

operator according to the definitions in [2] by Acosta et. al. The examined
boundary value problem can be defined as{

(−∆)
α
u(x) = f(x), x ∈ Ω

u(x) = 0, x ∈ Ωc.
(9)

Here Ω ⊂ R is a bounded domain, Ωc is the compliment of Ω in Rd and f(x),
x ∈ Ω is the right hand side with enough smoothness.

The variational formulation is obtained from (9) by multiplying with a test
function and integrating by parts. The equation for the weak solution is: find
u ∈ Hα(Ω), such that

C(d, α)

2
〈u, v〉HαRd =

∫
Ω

fv, v ∈ H̃α(Ω). (10)

The scalar product of u and v can be defined in the Hilbert space Hα(Ω) with
norm ‖·‖Hα(Ω) = ‖·‖L2(Ω)+|·|Hα(Ω). Here |·|Hα(Ω) is the Aronszajn-Slobodeckij
half norm. 〈u, v〉HαRd can be written as

〈u, v〉HαRd =

∫∫
Rd×Rd

(u(x)− u(y)) (v(x)− v(y))

|x− y|d+2α
dxdy.

We will point out that integration is carried out over the whole space Rd.
Correctness of the variational definition of the problem (10) as well as the

existence and uniqueness of the solution H̃α(Ω) follow from the Lax-Milgram
lemma.

4.1.1 Finite element settings

Let T be an admissible triangulation of the domain Ω containing NT trian-
gular elements. We examine the finite element space Vh of continuous linear in
part functions over T . Let {ϕ1, . . . , ϕN} ⊂ Vh be the Lagrangian nodal basis,
corresponding to the internal nodes x1, . . . , xN . Then ϕi(xj) = δji . Let T ∈ T is
a an element on the triangulation and let’s denote with hT and ρT the diameter
and the inner radius. We also write h = max

T∈T
hT . We examine shape-regular

triangulations, such that τ > 0 independent of T such that

hT ≤ τρT , ∀T ∈ T .

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 19/41

https://doi.org/10.55630/bmc.2022.08.158

Figure 7: Admissible triangulation Ω with an auxiliary ball B.

Figure 8: Reordering with nested dissection. “X” marks the first node, “O” – the last.

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 20/41

https://doi.org/10.55630/bmc.2022.08.158

Under these conditions for any α ∈ (0, 1) the discreet analog of the variational
problem (10) can be written as

C(d, α)

2
〈uh, vh〉Hα(Rn) =

∫
Ω

fvh, vh ∈ Vh. (11)

Here uh =
∑
j uj , ϕj denotes the numerical FEM solution of the stationary

diffusion problem (9).
Solving the discrete variational problem (11) is reduced to solving the system

of linear algebraic equations KU = F , where U = (uj) ∈ RN are the nodal un-
knowns. The stiffness matrix K is symmetrical and positively defined, therefore
the system has a single solution.

In the proposed FEM variant from [40] integration is reduced to a ball do-
main B ⊃ Ω, such that the distance between the border Ω and the compliment
Bc is sufficient. This introduces the additional triangulation T̃A over V \Ω, such
that the summary triangulation T̃ = T ∪ TA over B is admissible. An example
of such triangulation is shown on Figure 7. The nodes denoted with bold font
correspond to the unknowns uj .

Let’s denote the elements in the triangulation over B with MT̃ . Then the
elements inside the stiffness matrix K may be written as

Kij =
C(d, α)

2

NT̃∑
`=1

 NT̃∑
m=1

Ii,j`,m + 2J i,j`

 , `,m ∈ [1, . . . , NT̃] , (12)

where for the integrals I and J the following equations hold true

Ii,j`,m =

∫
T`

∫
Tm

(ϕ(x)− ϕi(y)) (ϕj(x)− ϕj(y))

|x− y|2+2α
dxdy (13)

J i,j` =

∫
T`

∫
Bc

ϕi(x)ϕ(x)

|x− y|2+2α
dydx. (14)

4.2 Reordering of the unknowns

In Subsection 2.4 we have mentioned that for certain classes of problem it
is possible to significantly improve the structure of the matrix by reordering
the unknowns. The analysis carried out in this subsection shows that for the
fractional diffusion problem this is necessary.

The original ordering of the triangulation nodes is shown on Figure 9a. This
ordering is obtained from the MatLab function initmesh when generating the
finite element mesh. The structure of the matrix corresponding to this ordering
is not suitable for the HSS solver from STRUMPACK.

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 21/41

https://doi.org/10.55630/bmc.2022.08.158

(a) No reordering (b) “top” (c) “stripes”

(d) “snake” (e) Nested Dissection (f) Recursive bisection

Figure 9: Reordering of the nodes in a square domain Ω and the structure of the
corresponding matrix. Dark gray lines represent the ordering of the nodes from the
first (marked with “X”) and the last (marked with “O”).

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 22/41

https://doi.org/10.55630/bmc.2022.08.158

4.2.1 Reordering by “Y” coordinate – “top”

With this reordering scheme the nodes in Ω are reordered by their “Y” coor-
dinate. The obtained reordering and matrix structure can be seen on Figure 9b.

4.2.2 Reordering by lines – “stripes”

With this reordering scheme the nodes are reordered on horizontal lines. An
example of this reordering and matrix structure can be see on Figure 9c.

4.2.3 Reordering on a spiral – “snake”

This algorithm reorders the unknowns on a spiral, similar to a coiled snake.
The reordering and the structure of the arising matrix can be seen on Figure 9d.

4.2.4 Reordering with Nested Dissection

The Nested Dissection method applies a “divide and conquer” heuristic for
the division of a graph representing a sparse symmetrical matrix. The algorithm
is executed in three steps:

1. Construction of an undirected graph corresponding to the triangulation,
such that the vertices are the mesh nodes and the edges are the sides of
the corresponding triangles.

2. Recursive partitioning of the graphs with separators (small sets of vertices
which, when removed, divide the graph in subgraphs).

3. Reordering of the nodes in accordance with the recursive structure: First
on subgraphs and then by separators.

The separators for an example square domain can be seen on Figure 8. The
reordering and the matrix structure are visualized on Figure 9d.

4.2.5 Reordering with recursive bisection

Recursive Bisection [41] is examined as another method for division of graphs.
Unlike the Nested Dissection the graph is divided in two subgraphs by remov-
ing edges. This process continues recursively. The subgraphs in each recursive
partitioning are numbered sequentially.

Recursive Bisection is used to balance the load on distributed memory HPC
machines [41].

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 23/41

https://doi.org/10.55630/bmc.2022.08.158

(a) Square domain (b) Circle domain

Figure 10: Solution of a fractional diffusion problem in square and circle domains.

(a) εrel = 10−2 (b) εrel = 10−4

(c) εrel = 10−6 (d) εrel = 10−8

Figure 11: Comparative analysis of the execution times for solving the system of linear
algebraic equations with MKL and STRUMPACK with reorderings “top”, “snake”,
“stripes”, nested dissection and recursive bisection.

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 24/41

https://doi.org/10.55630/bmc.2022.08.158

(a) Without reordering (b) “top” (c) “snake”

(d) “stripes” (e) Nested dissection (f) Recursive bisection

Figure 12: Maximum off-diagonal rank r.

4.3 Analysis of numerical experiments on computational systems
with shared memory

The experimental results presented in this section are obtained on a single
server of the AVITOHOL supercomputer. The original ordering is obtained
from the mesh generation implemented in the program from [2]. In order to im-
prove the effectiveness of the hierarchical solver from STRUMPACK we analyze
several reordering schemes.

The numerical experiments are for a fractional Laplacian with power α =
0.5. Visualization of the numerical solutions for the problem in a square and
circle domain are shown on Figure 10. In this paper we show results only for
the square domain.

In this section we analyze the performance of the two examined solvers,
based on their software implementation: LU factorization from MKL and HSS
compression from STRUMPACK.

4.3.1 Square domain

On Figure 11 we present the sequential execution times for solving the system
of linear algebraic equations. In most experiments the hierarchical solver shows

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 25/41

https://doi.org/10.55630/bmc.2022.08.158

(a) Without reordering (b) “top” (c) “snake”

(d) “stripes” (e) Nested dissection (f) Recursive bisection

Figure 13: Relation of the number of unknowns and maximum off-diagonal rank r.

better times with recursive bisection, followed by the nested dissection, “top”
and “stripes”. Experiments show that MKL has better performance for all
values of the relative threshold except for εrel = 10−2, where the recursive
bisection, “stripes” and “top” reorderings show better results. We can also
conclude that, except for the results without reordering and with the “snake”
algorithm, STRUMPACK shows similar performance to MKL.

Off-diagonal rank. On Figure 12 we present the off diagonal rank r, calcu-
lated in the HSS compression step. On Figure 13 we show the relation n/r.
The value of r is a measure for the effectiveness of the HSS compression on a
given matrix. The smaller the rank is, the more effective the compression is.
With the original ordering r has higher ranks that vary between 1/3 and 1/4
of the number of unknowns. The “snake” reordering shows the next highest
ranks. The rest of the reorderings have similar values for the ranks with the
recursive bisection having the edge on most of the experiments. The role of the
maximum off-diagonal rank is visible from the results analyzed in the previous
section, shown on Figure 11.

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 26/41

https://doi.org/10.55630/bmc.2022.08.158

(a) εrel = 10−2 (b) εrel = 10−4

(c) εrel = 10−6 (d) εrel = 10−8

Figure 14: Comparison of the parallel times with MKL and STRUMPACK with the
studied reorderings.

Parallel times and speedup. In this subsection we analyze the parallel
speedup. The numerical experiments are carried out with increasing problem
size n ∈ [2 131, 32 302]. The parallel results obtained with 16 threads are pre-
sented in Figure 14. The graphs have similar behavior and for the larger values
of n the acceleration becomes linear. This is according to the theoretical assess-
ments. We will also note that for εrel = 10−2 and “top” reordering HSS compres-
sion has better execution times for the two largest sizes n = 24 892 and 32 302.
In the rest of the case the MKL solver is faster. This is due to the more complex
recursive structure of the HSS compression. For larger problems we can expect
STRUMPACK to show better times than MKL when using smaller thresholds,
too.

Analysis of the accuracy of the HSS based solver. When applying the
HSS solver from STRUMPACK we obtain an approximation of the solution.
This is because the compressed matrix H is an approximation of the original
stiffness matrix K. As with the previous section we will analyze the error of the
method by calculating the relative error Rrelative (7). Again we will utilize the

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 27/41

https://doi.org/10.55630/bmc.2022.08.158

Table 4: Relative error for square domain.

No reorder “top”
Rrelative for rtol Rrelative for rtol

n 10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

2131 0.0125 0.000124 1.633e-06 1.088e-08 0.122 0.00014 1.469e-06 1.003e-08
4167 0.0244 0.000211 2.195e-06 1.414e-08 0.194 0.000345 1.868e-06 1.95e-08
8030 0.0435 0.000422 7.515e-06 5.049e-08 0.237 0.00681 5.732e-06 3.446e-08

12805 6.74 0.0212 6.258e-06 5.04e-08 0.329 0.00976 4.3e-06 6.554e-08
16184 0.136 0.000818 1.307e-05 1.035e-07 0.335 0.00117 5.96e-06 6.16e-08
24892 0.115 0.000955 1.791e-05 1.659e-07 0.45 0.00192 4.920e-06 9.5e-08
32302 0.145 0.0011 3.409e-05 1.533e-07 0.479 0.00246 9.788e-06 9.09e-08

“snake” “stripes”
Rrelative for rtol Rrelative for rtol

n 10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

2131 0.0786 0.000229 1.353e-06 1.144e-08 0.111 0.000324 2.01e-06 1.283e-08
4167 0.172 0.000355 2.212e-06 2.357e-08 0.193 0.000623 2.178e-06 4.491e-08
8030 0.206 0.00107 2.737e-06 5.342-08 0.287 0.00108 7.943e-06 4.421-08

12805 0.324 0.00286 6.105e-06 1.995e-07 0.382 0.00117 6.793e-06 7.977e-08
16184 0.397 0.00363 8.919e-06 9.394e-08 0.393 0.00163 5.446e-06 7.988e-08
24892 0.513 0.00753 1.32e-05 1.174e-07 0.478 0.00176 7.613e-06 1.211e-07
32302 0.587 0.00647 3.129e-05 1.774e-07 0.497 0.00231 9.161-06 1.088e-07

Nested dissection Recursive bisection
Rrelative for STRUMPACK with rtol Rrelative for STRUMPACK with rtol

n 10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

2131 0.145 0.000403 2.837e-06 3.022e-08 0.0892 0.000338 2.694e-06 2.373e-08
4167 0.247 0.00138 2.866e-06 6.963e-08 0.223 0.000987 3.28e-06 5.245e-08
8030 0.378 0.00221 6.636e-06 7.277e-08 0.373 0.00172 6.402e-06 7.322e-08

12805 0.469 0.00342 8.211e-06 1.159e-07 0.424 0.000929 7.06e-05 1.043e-07
16184 0.499 0.00268 8.668e-06 1.542e-07 0.487 0.00217 8.736e-06 1.745e-07
24892 0.583 0.00318 1.04e-05 1.536e-07 0.536 0.0033 1.738e-05 2.e-07
32302 0.615 0.00539 1.432e-05 2.159e-07 0.612 0.0031 1.419e-05 3.386e-07

direct Gaussian solution as reference.
The relative errors for the original ordering and the analyzed reorderings is

presented on Table 4. For most of the experiments the relative error is similar
to the relative threshold εrel. There are a few exceptions, where the accuracy is
lower than expected. For example, when using the “stripes” and “top” reorder-
ings for the the largest problems (n = 32 302, the relative error is substantially
larger than εrel. This is another indicator of the need for suitable reordering
methods.

The relative error depends on the effectiveness of the compression. This
means that when the maximum off-diagonal rank r is small, the compression is
more effective. This leads to smaller computational times, but larger relative
error Rrelative.

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 28/41

https://doi.org/10.55630/bmc.2022.08.158

4.4 Concluding remarks

The experimental comparative analysis is based on the realization of HSS
compression and ULV-like factorization in the STRUMPACK software library.
The analysis shows the better performance of the sequential algorithms in com-
parison with tile LU factorization. At the same time the acquired parallel
performance and speedup with STRUMPACK are lower, which is explained by
the more complex hierarchical and recursive nature of the HSS compression.

The accuracy and computational performance of the HSS compression is
highly dependent on the relative εrel and absolute εabs thresholds as well as the
existence of suitable matrix structure. The observed relative error has similar
value to the corresponding relative threshold. In order to improve the structure
of the matrix five reordering schemes are studied. The presented numerical
analysis shows that the recursive bisection has the best results in most of the
experiments.

The structure of the matrix obtained from the fractional diffusion problem is
less suitable than the problem investigated in Section 3. This can be explained
with the fact that the fractional Laplacian is strongly non-local. The examined
reordering schemes significantly improve the effectiveness of STRUMPACK. De-
spite this the parallel performance of the HSS compression is significantly lower
than the direct Gaussian elimination.

One of the advantages of the HSS compression is that when solving sequence
of systems of linear algebraic equations, in which the matrix doesn’t change,
the lower computational complexity of the solve with the factorized matrix
O(nr) has advantage over the solving after the LU decomposition – O(n2).
Such problem is, for example, the one studied in the next section – a parabolic
fractional diffusion with lumped mass matrix.

5 Finite Element Method for solving two dimensional
parabolic fractional diffusion problems

The main interest in this section is solving systems with an already fac-
torized matrix. This step, after HSS compression and ULV-like factorization,
has computational complexity O(nr) [33]. For comparison, when applying LU
factorization, the solving step takes O(n2) arithmetic operations. With the sta-
tionary elliptic problem this step is applied only once and has almost no impact
on the performance of the solvers. This is changed when the numerical method
is used to solve a sequence of systems of linear algebraic equations. In this case
the relative weight of the solving after factorization step is increased substan-
tially. Such problem is the finite element method discretization of a parabolic
fractional diffusion problem examined in this section.

In order to generate the matrix of mass an algorithm and a software module
are developed. It uses the information for the triangulation geometry T ∈ Ω.

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 29/41

https://doi.org/10.55630/bmc.2022.08.158

For the discretization in time we will use an implicit Euler scheme with an
uniform time step and a lumped matrix of mass.

For the Numerical experiments we use settings analogous to the test example
in [42] by Vabishchevich. This allows the numerical results, corresponding to the
two methods to be compared. Results presented in this Section are published
in [27].

5.1 Problem statement

We use the integral representation (9) of the fractional Laplacian. The
following parabolic problem with unknown function u(x, t), (x, t) ∈ Ω× [0, T] is
considered∣∣∣∣∣∣∣∣∣

∂u(x, t)

∂t
+ (−∆)αu(x, t) = f(x, t), x ∈ Ω, t ∈ [0, T],

u(x, t) = 0, x ∈ Ωc, t ∈ [0, T],

u(x, 0) = u0(x), x ∈ Ω.

Here [0, T] is the time interval. The Dirichlet homogeneous boundary conditions
are applied as in the previous problem.

We apply the same triangulation T ∈ Ω as in the previous section. The
following Cauchy problem is obtained

ML
du

dt
+Ku = MLf , 0 < t ≤ T, u(0) = u0,

for the unknown functions u = (uj(t)) ∈ RN , t ∈ [0, T] and right hand side
f = (fj(t)) ∈ RN . Here K = Kij ∈ RN×N is the stiffness matrix corresponding
to the fractional Laplacian. It has the form defined in (12) and (14). With
ML = diag

(
mi
L

)
∈ RN we denote the lumped matrix of mass, where mi

L is the
concentrated mass at node xi. The algorithm and programming module for the
computation of ML can be found in [27].

For the discretization over time we use the implicit Euler method, which in
the general case has the form

ML
uj+1 − uj

τj
+Kuj+1 = ML

f j+1 + f j

2
, j = 0, . . . ,m− 1, (15)

where m is the amount of time steps,

m−1∑
j=0

τj = T,

t0 = 0, tj+1 = tj + τj and uj = u(tj), f j = f(tj).

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 30/41

https://doi.org/10.55630/bmc.2022.08.158

In this paper we will limit ourselves to the case of a constant time step
τj = τ . Under this condition, each step in (15) comes down to solving the
system of linear algebraic equations

K̃uj+1 = f̃ j , (16)

where

K̃ =
ML

τ
+K, f̃ j = ML

(
f j+1 + f j

2
+

uj

τ

)
.

The mass and stiffness matrices are symmetric and positive definite thus
(16) has a unique solution. This means that in the implementation of Euler’s
method the factorization step is performed once, then we solve m systems with
the factorized matrix.

The computational complexity of LU factorization is O
(
n3
)
. Then the m

steps in time require another O
(
n2m

)
arithmetic operations.

In the hierarchical method – HSS compression and ULV-like factorization
have a summary complexity of O(rn2) and O(nrm) arithmetic operations are
needed to solve the factorized systems. Thus, the effectiveness of the hierarchical
method is determined by the max off-diagonal rank r.

Several reordering schemes were introduced in Section 4 for solving the frac-
tional diffusion problem. Here we will show only results for the most effective
– recursive bisection.

For the numerical experiments we will use a problem analogous to the
parabolic problem studied by Vabishchevich in [42], where the spectral definition
of a fractional Laplacian is used. The problem is solved for (x, t) ∈ Ω× [0, T] =
(−1, 1)2 × (0, 0.1). The solution is determined from the time independent right
hand side

f(x) = 0,

and initial condition

u0(x) = 100

(
x1 + 1

2

)2(
1− x1 + 1

2

)(
x2 + 1

2

)2(
1− x2 + 1

2

)
The discretization in time uses the triangulation from Section 4 with time step
τ = T/m, m = 256.

The initial condition u0(x) and numerical solutions with α = 0.5 for t ∈
{0.025, 0.05, 0.075, 0.1} are shown on Figure 15. The solution obtained is quali-
tatively similar to the results presented in [42] .

5.2 Analysis of numerical experiments on systems with
shared memory

The numerical results analyzed in this section are obtained on computer
systems with shared memory. As in previous section, the experiment was per-
formed on the AVITOHOL supercomputer.

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 31/41

https://doi.org/10.55630/bmc.2022.08.158

(a) t = 0 (b) t = 0.025 (c) t = 0.05

(d) t = 0.075 (e) t = 0.1

Figure 15: Numerical solutions of the model parabolic fractional diffusion problem
with α = 0.5: FEM in space and Euler’s implicit method in time.

The MatLab program, published in [2], was used to generate the stiffness
matrixK and the right part f . For the reordering of the unknowns with recursive
bisection we use the algorithm described in Subsection 4.2.5 and the developed
code presented in [26]. To calculate the lumped mass matrix ML we use the
algorithm presented in [27].

Sequential and parallel experiments. On Figure 16 we present: the exe-
cution times of the hierarchical semi-separable compression and ULV-like fac-
torization from STRUMPACK and LU factorization from MKL – (Figures 16a
and 16d); the total time for solving the systems with the factorized matrices of
each of the time steps in Euler’s method – (Figures 16b and 16e); and the total
time – (Figures 16c and 16f). In almost all cases, the numerical experiments
show better efficiency of the hierarchical method, and this tends to increase
with the number of unknowns n. For the largest system (n = 32 302) the to-
tal time with the HSS compression method from the STRUMPACK package
are between ∼2.5 and ∼5 times better than when using the LU factorization
from the MKL package. These results confirm the theoretical expectations for
stronger improvement of the efficiency of the hierarchical solver for the parabolic
problem, when compared to the stationary problem discussed in the previous
section.

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 32/41

https://doi.org/10.55630/bmc.2022.08.158

(a) Sequential times: com-
pression and factorization

(b) Sequential times:
Time steps

(c) Sequential times: Total

(d) Parallel times with
16 threads: compression
and factorization

(e) Parallel times with
16 threads: Time steps

(f) Parallel times with
16 threads: Total

Figure 16: Comparison between the solution times for the parabolic problem (16) with
MKL and STRUMPACK with a relative threshold εrel ∈ {10−2, 10−4, 10−6, 10−8}.

The parallel speed of the HSS based solver from STRUMPACK is shown on
Figure 17. The parallel experiments with 16 threads show speedup from ∼3
(for n = 2 131) up to ∼8(for n = 32 302). The lower parallel speedup of the
hierarchical method can be explained by the more complex hierarchical and re-
cursive structure of the compression algorithm. The parallel implementation of
the solver with HSS factorized matrix also has more complex (and less balanced)
structure than the tile LU factorization.

Off-diagonal rank. The maximum off-diagonal rank r, calculated during the
HSS compression, is presented on Figure 18a, on Figure 18b the relation n/r is
shown. This rank is a measure of the efficiency of the compression, and at the
same time is detrimental in estimating the computational complexity. For the
examined problem r has much smaller values than n. The compression is effi-
cient, meaning that r/n is small, with the largest values of the relative threshold
εrel. Thus with εrel = 10−2 the rank r is between ∼20 and ∼80 times smaller

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 33/41

https://doi.org/10.55630/bmc.2022.08.158

(a) εrel = 10−2 (b) εrel = 10−4

(c) εrel = 10−6 (d) εrel = 10−8

Figure 17: Parallel speedup in solving the parabolic problem with the application of
the HSS-based solver for m = 256 time steps.

(a) Max off-diagonal rank r (b) Relation of r and n

Figure 18: Visualization of the max off-diagonal rank r and relation n/r.

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 34/41

https://doi.org/10.55630/bmc.2022.08.158

than n, while with the finest threshold εrel = 10−8 this relation is between ∼10
and ∼30. This analysis shows that, after reordering with recursive bisection, the
matrix K̃ has suitable structure for HSS compression. This is also confirmed by
the numerical experiments showcasing the advantage of the hierarchical method
over Gaussian elimination (block LU factorization). It is important to note that
the compression is approximate. Thus, the higher compression efficiency (ob-
tained with higher threshold values εrel) is at the expense of the lower accuracy
of the solution.

Analysis of the relative error of the HSS-based solver. The compressed
matrix H, obtained after the HSS compression is an approximation of K̃. As
with the stationary problem in the previous section, we will analyze the relative
error Rrelative (7).

The relative errors Rrelative for four chosen points in time t is presented
on Table 5. As with the stationary problem, the relative error is close to the
supplied relative threshold εrel. The presented numerical results also show that
Rrelative doesn’t increase substantially with the increase of the time interval.
This confirms the stability of Euler’s implicit method.

5.3 Concluding remarks

The main topic in the presented results is the analysis of the computational
efficiency of a method based on Hierarchical Semi-Separable compression and
ULV-like factorization and their parallel implementation in the STRUMPACK
software package. One peculiarity of the applied implicit Euler method with a
constant step τ is that the numerical solution of the parabolic problem is reduced
to a sequence of m = T/τ systems of linear algebraic equations with the same
matrix K̃, only changing the right hand side at each time step. This means
that the matrix K̃ is factorized only once and the accent falls on the solution of
m systems with a factorized matrix. Recall that this step has a computational
complexity O(n2) for the Gaussian solver and O(nr) for the hierarchical solver.

The presented analysis shows that, for the considered problem, the rank r
is significantly smaller than the number of unknowns n, which determines the
advantage of the hierarchical method. As a result, both sequential and parallel
solution times utilizing the solver from the STRUMPACK software package are
significantly better than the execution times with the LU factorization from
MKL.

The relative error Rrelative is close to the examined values for the relative
threshold, growing steadily with the development of the process over time. This
confirms that the hierarchical method provides good accuracy with suitably
chosen εrel. The presented numerical results confirm the significant advantage
of the Hierarchical Semi-Separable compression method from the STRUMPACK
library.

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 35/41

https://doi.org/10.55630/bmc.2022.08.158

Table 5: Relative error of the HSS-based solver.

(a) t = 0.025 and t = 0.05
Relative error at t = 0.025 Relative error at t = 0.05

Rrelative for rtol Rrelative for rtol
n 10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

2131 0.00385 7.52e-05 2.78e-07 5.53e-08 0.00659 0.000124 4.62e-07 9.72e-08
4167 0.006 0.00013 6.4e-07 8.62e-08 0.01 0.000225 1.03e-06 1.36e-07
8030 0.0083 0.00023 1.28e-06 2.17e-07 0.0146 0.000375 2.e-06 3.49e-07

12805 0.0106 0.00028 1.68e-06 4.77e-07 0.0178 0.000484 2.49e-06 7.56e-07
16184 0.0126 0.0003 1.75e-06 5.16e-07 0.0227 0.00052 2.77e-06 7.88e-07
24892 0.0192 0.000393 2.5e-06 9.69e-07 0.0349 0.000619 3.97e-06 1.49e-06
32302 0.0234 0.000345 2.48e-06 1.18e-06 0.0437 0.000537 3.97e-06 1.76e-06

(b) t = 0.075 and t = 0.1
Relative error at t = 0.075 Relative error at t = 0.1

Rrelative for rtol Rrelative for rtol
n 10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

2131 0.0088 0.000159 5.98e-07 1.32e-07 0.0108 0.000188 7.07e-07 1.62e-07
4167 0.0135 0.000298 1.31e-06 1.707-07 0.0166 0.000361 1.55e-06 1.98e-07
8030 0.0206 0.000498 2.52e-06 4.55e-07 0.0264 0.000606 2.93e-06 5.49e-07

12805 0.0242 0.000653 3.09e-06 9.74e-07 0.0301 0.0008 3.6e-06 1.16e-06
16184 0.0324 0.000706 3.6e-06 1.01e-06 0.0419 0.000875 4.34e-06 1.2e-06
24892 0.0499 0.000807 5.19e-06 1.92e-06 0.0646 0.000973 6.26e-06 2.3e-06
32302 0.0636 0.000693 5.25e-06 2.21e-06 0.0832 0.000826 6.41e-06 2.58e-06

6 Conclusion

In this paper we analyze the computational efficiency of numerical meth-
ods and algorithms for solving systems of linear algebraic equations with dense
matrices. The motivation for this study are applications related to the numer-
ical solution of elliptical and parabolic partial differential equations. Two such
problems are used in the presented comparative analysis: a) boundary value
problem describing laminar flow around Joukowsky airfoils, discretized with the
Boundary Elements Method; b) anomalous diffusion inside a bounded domain
modeled with the fractional Laplacian, where the finite element method is ap-
plied for the discretization. In both cases the problems are reduced to systems
of linear algebraic equations with dense matrices. It is shown that the struc-
ture of these matrices is suitable for applying a hierarchical method using HSS
compression.

An important part of Section 3 is the comparative analysis of the compu-
tational complexity of software packages implementing tile LU factorization, a
variant of Gaussian elimination. The general conclusion is that the MKL library
has better performance than the examined alternative implementations of LU
factorization.

The accent in this work is the analysis of the possibility for improvement
of the computational efficiency of solving systems of linear algebraic equations

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 36/41

https://doi.org/10.55630/bmc.2022.08.158

with dense matrices with the help of an hierarchical method utilizing HSS com-
pression. This method is implemented in the STRUMPACK software package.
In Sections 3 and 4 we examine the performance of the hierarchical algorithm
for systems of linear algebraic equations obtained from the application of the
boundary element and finite element methods, respectively, for the considered
elliptic boundary problems. The analysis shows that the studied dense matrices
have a suitable structure for the application of the hierarchical method. This
means that the HSS compression finds low-rank off-diagonal blocks.

The sequential experiments affirm the computational complexity measures
of the analyzed tile methods. For both problems the hierarchical solver shows
better performance than the MKL Gaussian elimination algorithm – the most
efficient from the studied software packages implementing LU factorization.

When applying the hierarchical method we obtain an approximate solution
of the system. Its accuracy depends on the accuracy of the HSS compression.
We base the analysis of the relative error Rrelative of the numerical experiments
on using the solution obtained from LU factorization as reference. For the
fractional diffusion problem the relative error is observed to be close to the
set threshold εrel. This can be accepted as a good characteristic for the HSS
compression solver. For the flow around Joukowsky airfoils problem the relative
error for the corresponding εrel is larger, but this is compensated with better
execution time performance.

It is well known that the quality of the Hierarchical Semi-Separable com-
pression depends heavily on the structure of the dense matrix. With the two
dimensional fractional diffusion problem the structure of the originally obtained
dense matrix is not suitable for HSS compression. In order to improve it five
reordering schemes are applied. The presented analysis shows the advantages
of using Nested Dissection and Recursive Bisection.

In Section 5 we study the computational performance and accuracy of the
hierarchical solver based on HSS compression for a parabolic problem with frac-
tional in space diffusion. The discretization in time is carried out with an
implicit Euler differential scheme with uniform step. Finding the numerical so-
lution of this problem is reduced to a sequence of systems of linear algebraic
equations with the same matrix. In this way on every time step we solve a sys-
tem that is factorized once only. Solving such systems with HSS compression
has lower computational complexity – O(nr) in comparison to the LU factor-
ization’s O(n2). For the examined parabolic problem the hierarchical solver’s
execution times are better both for the sequential and parallel experiments.
At the same time, thanks to the unconditional stability of the implicit Euler
method, the relative error is close to the set relative threshold εrel.

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 37/41

https://doi.org/10.55630/bmc.2022.08.158

Conflicts of Interest

The author declares that there are no conflicts of interest regarding the
publication of this paper.

Acknowledgments

We acknowledge the provided access to the e-infrastructure of the National
Centre for High-performance and Distributed Computing (NCHDC) – part of
the Bulgarian National Roadmap for Research Infrastructures, with the financial
support by the Grant No D01-387/18.12.2020.

We acknowledge the support of the Centre of Excellence in Informatics and
Information and Communication Technologies, accomplished by the financial
support of Grant No BG05M2OP001-1.001-0003, financed by the Science and
Education for Smart Growth Operational Program (2014-2020) and co-financed
by the European Union through the European Structural and Investment funds.

References

[1] S. Margenov, Numerical Methods for Systems with Sparse Matrices, Institute
for Parallel Processing, Bulgarian Academy of Sciences, Sofia, 2007, 155 p. (in
Bulgarian).

[2] G. Acosta, F.M. Bersetche, J.P. Borthagaray, “A short FE implementation for
a 2d homogeneous Dirichlet problem of a fractional Laplacian”, Computers &
Mathematics with Applications, 74(4):784-816, 2017.

[3] W. Hackbusch, “A Sparse Matrix Arithmetic Based on H-Matrices. Part I: In-
troduction to H-Matrices”, Computing, 62:89-108, 1999.

[4] W. Hackbusch, B. Khoromskij, S.A. Sauter, “On H2-Matrices”, Lectures on Ap-
plied Mathematics, Springer, Berlin, Heidelberg, 9-29, 2000.

[5] D. Slavchev, Composite Numerical Methods and Scalable Tile Algorithms, Ab-
stract of Dissertation, Institute of Information and Communication Technologies,
Bulgarian Academy of Sciences, Sofia, 2022.

[6] D. Slavchev, Composite Numerical Methods and Scalable Tile Algorithms, Dis-
sertation, Institute of Information and Communication Technologies, Bulgarian
Academy of Sciences, Sofia, 2022 (in Bulgarian).

[7] S. Moretti, “In Silico Experiments in Scientific Papers on Molecular Biology”,
Science & Technology Studies, 24(2):23-42, 2011.

[8] L. Litov, P. Petkov, M. Rangelov, N. Ilieva, E. Lilkova, N. Todorova, E. Krach-
marova, K. Malinova, A. Gospodinov, R. Hristova, I. Ivanov, G. Nacheva, “Molec-
ular Mechanism of the Anti-Inflammatory Action of Heparin”, International
Journal of Molecular Sciences, 22(19), Art. 10730, 2021.

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 38/41

http://nchdc.acad.bg/en/
https://parallel.bas.bg/~margenov/Monographs.html
https://parallel.bas.bg/~margenov/Monographs.html
https://parallel.bas.bg/~margenov/Monographs.html
https://doi.org/10.1016/j.camwa.2017.05.026
https://doi.org/10.1016/j.camwa.2017.05.026
https://doi.org/10.1016/j.camwa.2017.05.026
https://doi.org/10.1007/s006070050015
https://doi.org/10.1007/s006070050015
https://doi.org/10.1007/978-3-642-59709-1_2
https://doi.org/10.1007/978-3-642-59709-1_2
https://www.iict.bas.bg/konkursi/2022/DSlavchev/absrtact-en.pdf
https://www.iict.bas.bg/konkursi/2022/DSlavchev/absrtact-en.pdf
https://www.iict.bas.bg/konkursi/2022/DSlavchev/absrtact-en.pdf
https://www.iict.bas.bg/konkursi/2022/DSlavchev/disertacia.pdf
https://www.iict.bas.bg/konkursi/2022/DSlavchev/disertacia.pdf
https://www.iict.bas.bg/konkursi/2022/DSlavchev/disertacia.pdf
https://doi.org/10.23987/sts.55262
https://doi.org/10.23987/sts.55262
https://doi.org/10.3390/ijms221910730
https://doi.org/10.3390/ijms221910730
https://doi.org/10.3390/ijms221910730
https://doi.org/10.3390/ijms221910730
https://doi.org/10.55630/bmc.2022.08.158

[9] Z. Mao, N. Chimitt, S.H. Chan, “Accelerating Atmospheric Turbulence Simu-
lation via Learned Phase-to-Space Transform”, Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 14759-14768, 2021.

[10] G. D’Angelo, S. Rampone, “Diagnosis of aerospace structure defects by a HPC
implemented soft computing algorithm”, 2014 IEEE Metrology for Aerospace
(MetroAeroSpace), IEEE, 408-412, 2014.

[11] I. Lirkov, S. Harizanov, M. Paprzycki, M. Ganzha, “Performance analysis of
parallel high-resolution image restoration algorithms on Intel supercomputer”,
Concurrency and Computation: Practice and Experience, 33(4), Art. e5996, 2021.

[12] M. Ganzha, I. Lirkov, M. Paprzycki, “Performance analysis of hybrid parallel
solver for 3D Stokes equation on Intel Xeon computer system”, AIP Conference
Proceedings, 2164, Art. 120003, 2019.

[13] P.G. Martinsson, “A Fast Randomized Algorithm for Computing a Hierarchically
Semiseparable Representation of a Matrix”, SIAM Journal on Matrix Analysis
and Applications, 32(4):1251-1274, 2011.

[14] J. Xia, S. Chandrasekaran, M. Gu, X.S. Li, “Fast algorithms for hierarchically
semiseparable matrices”, Numerical Linear Algebra with Applications, 17(6):953-
976, 2010.

[15] K. Binder, Ch. Bennemann, J. Baschnagel, W. Paul, “Anomalous diffusion of
polymers in supercooled melts near the glass transition”, Anomalous Diffusion
From Basics to Applications, Lecture Notes in Physics, 519:124-139, Springer,
Berlin, Heidelberg, 1999.

[16] T.A.M. Langlands, B.I. Henry, S.L. Wearne, “Fractional Cable Equation Models
for Anomalous Electrodiffusion in Nerve Cells: Finite Domain Solutions”, SIAM
Journal on Applied Mathematics, 71(4):1168-1203, 2011.

[17] H. Taitelbaum, “Diagnosis using photon diffusion: From brain oxygenation to the
fat of the atlantic salmon”, Anomalous Diffusion From Basics to Applications,
Lecture Notes in Physics, 519:160-174, Springer, Berlin, Heidelberg, 1999.

[18] L. Rosasco, M. Belkin, E. De Vito, “On Learning with Integral Operators”, Jour-
nal of Machine Learning Research, 11(30):905-934, 2010.

[19] S. Chaturapruek, J. Breslau, D. Yazdi, T. Kolokolnikov, S. G. McCalla,
“Crime Modeling With Lévy Flights”, SIAM Journal on Applied Mathematics,
73(4):1703-1720, 2013.

[20] S. Harizanov, S. Margenov, N. Popivanov, “Spectral Fractional Laplacian with
Inhomogeneous Dirichlet Data: Questions, Problems, Solutions”, BGSIAM 2018:
Advanced Computing in Industrial Mathematics, Studies in Computational Intel-
ligence, 961:123-138, Springer, Cham, 2021.

[21] R. Musina, A.I. Nazarov, “On Fractional Laplacians”, Communications in Partial
Differential Equations, 39(9):1780-1790, 2014.

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 39/41

https://openaccess.thecvf.com/content/ICCV2021/html/Mao_Accelerating_Atmospheric_Turbulence_Simulation_via_Learned_Phase-to-Space_Transform_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Mao_Accelerating_Atmospheric_Turbulence_Simulation_via_Learned_Phase-to-Space_Transform_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Mao_Accelerating_Atmospheric_Turbulence_Simulation_via_Learned_Phase-to-Space_Transform_ICCV_2021_paper.html
https://doi.org/10.1109/MetroAeroSpace.2014.6865959
https://doi.org/10.1109/MetroAeroSpace.2014.6865959
https://doi.org/10.1109/MetroAeroSpace.2014.6865959
https://doi.org/10.1002/cpe.5996
https://doi.org/10.1002/cpe.5996
https://doi.org/10.1002/cpe.5996
https://doi.org/10.1063/1.5130863
https://doi.org/10.1063/1.5130863
https://doi.org/10.1063/1.5130863
https://doi.org/10.1137/100786617
https://doi.org/10.1137/100786617
https://doi.org/10.1137/100786617
https://doi.org/10.1002/nla.691
https://doi.org/10.1002/nla.691
https://doi.org/10.1002/nla.691
https://doi.org/10.1007/BFb0106837
https://doi.org/10.1007/BFb0106837
https://doi.org/10.1007/BFb0106837
https://doi.org/10.1007/BFb0106837
https://doi.org/10.1137/090775920
https://doi.org/10.1137/090775920
https://doi.org/10.1137/090775920
https://doi.org/10.1007/BFb0106840
https://doi.org/10.1007/BFb0106840
https://doi.org/10.1007/BFb0106840
https://jmlr.org/papers/v11/rosasco10a.html
https://jmlr.org/papers/v11/rosasco10a.html
https://www.jstor.org/stable/24510700
https://www.jstor.org/stable/24510700
https://www.jstor.org/stable/24510700
https://doi.org/10.1007/978-3-030-71616-5_13
https://doi.org/10.1007/978-3-030-71616-5_13
https://doi.org/10.1007/978-3-030-71616-5_13
https://doi.org/10.1007/978-3-030-71616-5_13
https://doi.org/10.1080/03605302.2013.864304
https://doi.org/10.1080/03605302.2013.864304
https://doi.org/10.55630/bmc.2022.08.158

[22] S. Harizanov, R. Lazarov, S. Margenov, “A Survey on Numerical Methods for
Spectral Space-Fractional Diffusion Problems”, Fractional Calculus and Applied
Analysis, 23:1605-1646, 2020.

[23] D. Slavchev, Parallelization of Boundary Element Method for Laplasian Equation,
Master’s Thesis, Technical University, Sofia, 2014.

[24] D. Slavchev, “On the Impact of Reordering in a Hierarchical Semi-Separable Com-
pression Solver for Fractional Diffusion Problems”, LSSC 2019: Large-Scale Sci-
entific Computing, Lecture Notes in Computer Science, 11958:373-381, Springer,
Cham, 2020.

[25] D. Slavchev, “Performance Analysis of Hierarchical Semi-separable Compression
Solver for Fractional Diffusion Problems”, BGSIAM 2018: Advanced Computing
in Industrial Mathematics, Studies in Computational Intelligence, 961:333-344,
Springer, Cham, 2021.

[26] D. Slavchev, S. Margenov, I.G. Georgiev, “On the application of recursive bisec-
tion and nested dissection reorderings for solving fractional diffusion problems
using HSS compression”, AIP Conference Proceedings, 2302, Art. 120008, 2020.

[27] D. Slavchev, S. Margenov, “Performance Study of Hierarchical Semi-separable
Compression Solver for Parabolic Problems with Space-Fractional Diffusion”,
LSSC 2021: Large-Scale Scientific Computing, Lecture Notes in Computer Sci-
ence, 13127:71-80, Springer, Cham, 2022.

[28] M. Benzi, D. Bini, D. Kressner, H. Munthe-Kaas, Ch. Van Loan, Exploiting
Hidden Structure in Matrix Computations: Algorithms and Applications, Lecture
Notes in Mathematics, 2173, Springer, Cham, 2015.

[29] F.-H. Rouet, X.S. Li, P. Ghysels, A. Napov, “A Distributed-Memory Package
for Dense Hierarchically Semi-Separable Matrix Computations Using Random-
ization”, ACM Transactions on Mathematical Software, 42(4):1-35, Art. 27, 2016.

[30] E. Rebrova, G. Chávez, Y. Liu, P. Ghysels, X.S. Li, “A Study of Clustering
Techniques and Hierarchical Matrix Formats for Kernel Ridge Regression”, 2018
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), IEEE, 883-892, 2018.

[31] Ch. Gorman, G. Chávez, P. Ghysels, T. Mary, F.-H. Rouet, X.S. Li, Matrix-
free construction of HSS representation using adaptive randomized sampling,
arXiv:1810.04125, 24 p.

[32] P. Ghysels, X.S. Li, F.-H. Rouet, S. Williams, A. Napov, “An Efficient Multicore
Implementation of a Novel HSS-Structured Multifrontal Solver Using Random-
ized Sampling”, SIAM Journal on Scientific Computing, 38(5):S358-S384, 2016.

[33] S. Chandrasekaran, M. Gu, T. Pals, “A Fast ULV Decomposition Solver for Hi-
erarchically Semiseparable Representations”, SIAM Journal on Matrix Analysis
and Applications, 28(3):603-622, 2006.

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 40/41

https://doi.org/10.1515/fca-2020-0080
https://doi.org/10.1515/fca-2020-0080
https://doi.org/10.1515/fca-2020-0080
https://tu-sofia.bg/
https://tu-sofia.bg/
https://doi.org/10.1007/978-3-030-41032-2_43
https://doi.org/10.1007/978-3-030-41032-2_43
https://doi.org/10.1007/978-3-030-41032-2_43
https://doi.org/10.1007/978-3-030-41032-2_43
https://doi.org/10.1007/978-3-030-71616-5_30
https://doi.org/10.1007/978-3-030-71616-5_30
https://doi.org/10.1007/978-3-030-71616-5_30
https://doi.org/10.1007/978-3-030-71616-5_30
https://doi.org/10.1063/5.0034506
https://doi.org/10.1063/5.0034506
https://doi.org/10.1063/5.0034506
https://doi.org/10.1007/978-3-030-97549-4_8
https://doi.org/10.1007/978-3-030-97549-4_8
https://doi.org/10.1007/978-3-030-97549-4_8
https://doi.org/10.1007/978-3-030-97549-4_8
https://doi.org/10.1007/978-3-319-49887-4
https://doi.org/10.1007/978-3-319-49887-4
https://doi.org/10.1007/978-3-319-49887-4
https://doi.org/10.1145/2930660
https://doi.org/10.1145/2930660
https://doi.org/10.1145/2930660
https://doi.org/10.1109/IPDPSW.2018.00140
https://doi.org/10.1109/IPDPSW.2018.00140
https://doi.org/10.1109/IPDPSW.2018.00140
https://doi.org/10.1109/IPDPSW.2018.00140
https://arxiv.org/abs/1810.04125
https://arxiv.org/abs/1810.04125
https://arxiv.org/abs/1810.04125
https://doi.org/10.1137/15M1010117
https://doi.org/10.1137/15M1010117
https://doi.org/10.1137/15M1010117
https://doi.org/10.1137/S0895479803436652
https://doi.org/10.1137/S0895479803436652
https://doi.org/10.1137/S0895479803436652
https://doi.org/10.55630/bmc.2022.08.158

[34] V. Pasheva, R. Lazarov, “Boundary element method for 2D problems of ideal fluid
flows with free boundaries”, Advances in Water Resources, 12(1):37-45, 1989.

[35] D. Slavchev, S. Margenov, “Performance Analysis of Intel Xeon Phi MICs and
Intel Xeon CPUs for Solving Dense Systems of Linear Algebraic Equations: Case
Study of Boundary Element Method for Flow Around Airfoils”, BGSIAM 2017:
Advanced Computing in Industrial Mathematics, Studies in Computational Intel-
ligence, 793:369-381, Springer, Cham, 2019.

[36] D. Slavchev, S. Margenov, “Analysis of Hierarchical Compression Parallel Solver
for BEM Problems on Intel Xeon CPUs”, NMA 2018: Numerical Methods
and Applications, Lecture Notes in Computer Science, 11189:466-473, Springer,
Cham, 2019.

[37] D. Slavchev, S. Margenov, “Performance analysis of a Parallel Hierarchical Semi-
Separable compression solver in shared and distributed memory environment for
BEM discretization of Flow around Airfoils”, BGSIAM 2019: Advanced Comput-
ing in Industrial Mathematics, in press.

[38] J. Dongarra, M. Abalenkovs, A. Abdelfattah, M. Gates, A. Haidar, J. Kurzak, P.
Luszczek, S. Tomov, I. Yamazaki, A. YarKhan, “Parallel Programming Models
for Dense Linear Algebra on Heterogeneous Systems”, Supercomputing Frontiers
and Innovations, 2(4):67-86, 2015.

[39] R.C. Whaley, “ATLAS (Automatically Tuned Linear Algebra Software)”, Ency-
clopedia of Parallel Computing, Springer, Boston, Massachusetts, 95-101, 2011.

[40] G. Acosta, J.P. Borthagaray, “A Fractional Laplace Equation: Regularity of
Solutions and Finite Element Approximations”, SIAM Journal on Numerical
Analysis, 55(2):472-495, 2017.

[41] H.D. Simon, S.-H. Teng, “How Good is Recursive Bisection?”, SIAM Journal on
Scientific Computing, 18(5):1436-1445, 1997.

[42] P.N. Vabishchevich, “Splitting schemes for non-stationary problems with a ra-
tional approximation for fractional powers of the operator”, Applied Numerical
Mathematics, 165:414-430, 2021.

Biomath Communications 9 (2022), 2208159, 10.55630/bmc.2022.08.159 41/41

https://doi.org/10.1016/0309-1708(89)90014-6
https://doi.org/10.1016/0309-1708(89)90014-6
https://doi.org/10.1007/978-3-319-97277-0_30
https://doi.org/10.1007/978-3-319-97277-0_30
https://doi.org/10.1007/978-3-319-97277-0_30
https://doi.org/10.1007/978-3-319-97277-0_30
https://doi.org/10.1007/978-3-319-97277-0_30
https://doi.org/10.1007/978-3-030-10692-8_53
https://doi.org/10.1007/978-3-030-10692-8_53
https://doi.org/10.1007/978-3-030-10692-8_53
https://doi.org/10.1007/978-3-030-10692-8_53
http://www.math.bas.bg/bgsiam/docs/bgsiam_2019_abstracts.pdf#page=96
http://www.math.bas.bg/bgsiam/docs/bgsiam_2019_abstracts.pdf#page=96
http://www.math.bas.bg/bgsiam/docs/bgsiam_2019_abstracts.pdf#page=96
http://www.math.bas.bg/bgsiam/docs/bgsiam_2019_abstracts.pdf#page=96
https://doi.org/10.14529/jsfi150405
https://doi.org/10.14529/jsfi150405
https://doi.org/10.14529/jsfi150405
https://doi.org/10.14529/jsfi150405
https://doi.org/10.1007/978-0-387-09766-4_85
https://doi.org/10.1007/978-0-387-09766-4_85
https://doi.org/10.1137/15M1033952
https://doi.org/10.1137/15M1033952
https://doi.org/10.1137/15M1033952
https://doi.org/10.1137/S1064827593255135
https://doi.org/10.1137/S1064827593255135
https://doi.org/10.1016/j.apnum.2021.03.006
https://doi.org/10.1016/j.apnum.2021.03.006
https://doi.org/10.1016/j.apnum.2021.03.006
https://doi.org/10.55630/bmc.2022.08.158

	Introduction
	Overview of key results in the field
	Goals and objectives of this work
	Research methodology
	Content structure

	Methods for solving systems of linear algebraic equations with dense systems
	Direct methods
	Gauss method
	LU factorization
	Hierarchical matrices. Methods for solving systems of linear algebraic equations with hierarchical semi-separable compression

	Boundary Element Method for numerical solution of a two dimensional flow around airfoils problem
	Problem statement
	Boundary Element Method calculating the flow function in an ideal fluid in unbounded two dimensional domain
	Fluid flow around airfoils
	Discretization

	Analysis of numerical experiments on computers with shared memory
	LU factorization
	Hierarchical Semi-Separable compression

	Parallel scalability on computer systems with distributed memory
	LU factorization
	HSS compression

	Concluding remarks

	Finite Element Method for numerical solution of a two dimensional fractional diffusion problem
	Problem Statement
	Finite element settings

	Reordering of the unknowns
	Reordering by ``Y'' coordinate – ``top''
	Reordering by lines – ``stripes''
	Reordering on a spiral – ``snake''
	Reordering with Nested Dissection
	Reordering with recursive bisection

	Analysis of numerical experiments on computational systems with shared memory
	Square domain

	Concluding remarks

	Finite Element Method for solving two dimensional parabolic fractional diffusion problems
	Problem statement
	Analysis of numerical experiments on systems with shared memory
	Concluding remarks

	Conclusion

