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Abstract

The Kies probability model [1] was proposed as an alternative to the
extended Weibull models as it provides a more efficient fit to some real-life
data sets in comparison to the aforementioned models. In the present ar-
ticle, it has first been shown that the dynamic Kies model is generated by
a specific framework of chemical reaction networks. We will also discuss
some properties of the family by Kies. Precise bounds for the Hausdorff
distance between the Heaviside step function and the considered sigmoid
are also given. We also define a hypothetical family of generalized Kies
CDF. Some computational examples using CAS Mathematica are pre-
sented.
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1 Introduction

One of the modified versions of the Weibull distribution is known as Kies
Distribution and was firstly proposed by Kies (1958) [1].

The Kies probability model was proposed as an alternative to the extended
Weibull models as it provides a more efficient fit to some real–life data sets in
comparison to the aforementioned models.

For some modifications see [2–6].

Definition 1. The cumulative distribution function (CDF) of the two-parameter
Kies distribution is given by:

F (t) = 1− e−k(
t

1−t )
a

, (1)

where 0 < t < 1, k > 0 and a > 0.

In the present work, it has first been shown that the dynamic Kies model is
generated by a specific framework of chemical reaction networks.

“Confidence bands” are given for the CDF of Kies distribution (see for ex-
ample [2]).

In recent years, it has become necessary to study the “saturation” of CDF
to the horizontal asymptote about Hausdorff distance.

The two characteristics of “confidence bands – saturation” allow the user to
choose an appropriate model when approximating specific data from different
branches of scientific knowledge.

Definition 2 ([7]). The Hausdorff distance (the H–distance) ρ(f, g) between
two interval functions f, g on Ω ⊆ R, is the distance between their completed
graphs F (f) and F (g) considered as closed subsets of Ω× R. More precisely,

ρ(f, g) = max

{
sup

A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||
}
,

where ||.|| is any norm in R2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|},
hence the distance between the points A = (tA, xA), B = (tB , xB) in R2 is
||A−B|| = max(|tA − tB |, |xA − xB |).

Definition 3. The shifted Heaviside step–function is defined by:

h0(t) =


0, if t < t0,

[0, 1], if t = t0,

1, if t > t0.

In this article we will also discuss some properties of the family (1).
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2 Main results

2.1 The CDF of Kies distribution generated by reaction networks
and based on “correcting amendments of fractional linear func-
tion – type”

In the present section we discuss the usage of the framework of chemical
reaction network for the construction of dynamical model by Kies and its math-
ematical analysis.

Without loss of generality, let’s fix the parameter a = 1 in the model (1).
Consider the reaction (network):

S
k−→ P (2)

(k > 0) known in chemistry as a “first-order (FO)” reaction and in nuclear
physics as “one-step exponential radioactive decay (1-SERD)”.

This elementary reaction is known under several additional names due to its
application to various processes such as radioactive nuclear decay, fluid dynam-
ics, enzyme kinetics, marine ecology, physico-chemistry, etc. For some details,
see Markov [8].

Reaction (2) induces the following dynamical system for the change rates of
the concentrations s = s(t), p = p(t) of species S, P:

ds(t)

dt
= −ks(t),

dp(t)

dt
= ks(t),

(3)

with s(0) = s0, p(0) = p0.
System (3) implies the relation

s+ p = c = const. (4)

When equipped with initial conditions s(0) = s0 = 1, p(0) = p0 = 0 from
relation (4) becomes s+ p = 1, hence s = 1− p.

Substituting s = 1−p in equation p′ = ks we obtain an autonomous ordinary
differential equation for the growth function of the form

p′ = k(1− p) (5)

and
p(t) = 1− e−kt. (6)

Following the ideas given in [9] we consider the following hypothetical reac-
tion (network):

Y
ρ(t)−→ X (7)
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wherein ρ(t) is the “rate function”.
Reaction network (7) induces the following differential system:

dy(t)

dt
= −ρ(t)y(t),

dx(t)

dt
= ρ(t)y(t).

(8)

Let y(0) = y0 = 1, x(0) = x0 = 0 and

ρ(t) =
k

(1− t)2
.

Hence, the new model can be written for the growth function in the form:

x′(t) =
k

(1− t)2
(1− x(t)), x(0) = 0. (9)

Some computational examples using CAS Mathematica are given in Figs. 1–2.
Obviously, the function x(t) coincides with the original Kies model (1) for

fixed a = 1 (see Fig. 2). The model p(t) (6) – dashed for the same fixed value
of the “rate constant” k = 20 is visualized on the same graph.

We tried to give a mathematical justification for the model proposed by Kies.
In all likelihood, he was guided by such considerations in defining the prob-

ability distribution.
From the comparison of the two models it can be concluded that with the

Kies model for a short time interval can be achieved a good approximation
of specific data, such as those arising from the field of Population Dynamics,
Debugging Theory and Computer Viruses Propagation.

2.2 Some Properties

For the “saturation” d to the horizontal asymptote using model (1) in the
Hausdorff sense [7] we have

F (d) = 1− d. (10)

For example, for fixed k = 20 we find d = 0.10232. For k = 40 we have
d = 0.0642257 and for k = 80 we find d = 0.0389784 (see Fig. 3).

The following is valid.

Theorem. For k ≥ 2, for the “saturation” d we have

0 < d <
ln(k + 1)

k + 1
:= dr. (11)
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Figure 1: Module in the software environment CAS Mathematica for solving and
visualizing the solution of the differential equation (9).

Figure 2: For fixed k = 20 the original Kies model (1)-red and model p(t) (6)-dashed.
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Figure 3: The function F (t) (1) for fixed a = 1: a) k = 20, d = 0.10232, b) k = 40,
d = 0.0642257, c) k = 80, d = 0.0389784.
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Figure 4: The functions G(d) (red) and H(d) (green) for fixed k = 40, d = 0.0642257.

Table 1: Bounds for d computed by (10) and (11) for various values of k.

k d computed by (10) dr computed by (11)
100 0.03299 0.0456943
300 0.0140239 0.0189605
1000 0.00522654 0.00690185
3000 0.0020578 0.00266801

Sketch of the proof. Insofar as the proof is based on a technique proposed in
[10], we will only note that from (10) it is easy to see that d = d(k) is the only
positive root of the nonlinear equation

G(d) := F (d)− 1 + d = 0. (12)

Evidently, the function
H(d) := −1 + (1 + k)d (13)

approximates G(d) with d→ 0 as O(d2) (see, for example Fig. 4). The functions
G and H are increasing and H(dr) > 0 for k ≥ 2.

Remark. We will explicitly note that the estimate (11) may be useful for users
due to the fact that the adaptation of this model in an arbitrary Computer Al-
gebraic Calculation System presupposes the knowledge of an appropriate initial
approximation for the root of the nonlinear equation (10), and, moreover, it is
necessary double precision operation.
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Figure 5: The function F (t) for k = 20, a = 1.7, t0 = 0.121554, H-distance d =
0.098216.

Some computational examples using relations (10) and (11) are presented in
Table 1.

Consider the function F (t) for k > 0, a > 0. Let t0 is the “median level”, i.e.
F (t0) = 1

2 . For the H–distance between Heaviside function h0 and the sigmoidal
function F (t) we have:

F (t0 + d) = 1− d. (14)

For example, for fixed k = 20, a = 1.7, t0 = 0.121554 we find from nonlinear
equation (14) d = 0.098216 (see Fig. 5). For other results, see [11–20].

2.3 Concluding remarks

Tadmor and Tanner [21, 22] construct a new class of accurate filters for
processing piecewise smooth spectral data:

σadapt(t) :=

{
e
− cqtq

1−t2 , |t| < 1,

0, |t| ≥ 1,
(15)

where

cq = 2q.
3

8
.
18q2 + 3q + 14

9q2 + 6q + 2
.

Some properties of the σadapt(t) are considered in [23].
Consider the following hypothetical family:

Fi(t; k) = 1− e−k
(

ti

1−ti

)
= 1−Qi(t; k), i = 1, 2, . . . (16)
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Figure 6: The model Fi(t; k) for i = 1, 2, 3, 4 and fixed k = 20.

Figure 7: a) The Tadmor-Tanner exponentially optimal filter for q = 2 and q = 4, b)
The factor Q4(k; t) from (16) for k = 10.

The model Fi(t; k) for i = 1, 2, 3, 4 and fixed k = 20 is visualized on the
Fig. 6. The modified adaptive functions of type Fi(t; k) find application in the
field of antenna-feeder analysis. Some comparisons between the Tadmor-Tanner
filter σadapt(t) and the new factor Qi(t; k) from (16) are illustrated in Fig. 7.

We define the following activation function based on Qi(t; k):

F ∗i (t; k) =
1−Qi(t; k)

1 +Qi(t; k)
. (17)

In antenna-feeder technique most often occurred signals are of types shown
on Fig. 8. For i even, the corresponding approximation using model (17) is
shown in Fig. 8a. For i odd, the corresponding approximation using new acti-
vation function F ∗i (t; k) is shown in Fig. 8b.

Let t = b cos θ+c, where θ is the azimuthal angle and c is the phase difference.
Then, for example, typical radiation pattern using |Fi(b cos θ + c; k)| for i = 5,
k = 240, b = 0.33, c = 0.073 is plotted on Fig. 9.
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Figure 8: a) Approximation by F ∗
4 (t) for k = 15, b) Approximation by F ∗

3 (t) for
k = 22.

Figure 9: A typical radiation pattern using |Fi(b cos θ + c; k)| for i = 5, k = 240,
b = 0.33, c = 0.073.

In this article we consider only some aspects related to the disclosure of
intrinsic properties of some proposed “adaptive functions” in a purely method-
ological aspect. The question of the optimality of Qi(t; k) can be considered
open.
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