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Abstract

In this Master’s thesis, we consider the problem of mathematical mod-
elling and computer simulations of neuromuscular activation. We describe
the biological and biochemical processes that result in a muscle contrac-
tion. For each of them, we derive a mathematical model, established in
the literature. In particular, we consider:

• the Hodgkin–Huxley model of neural transmission;

• a reaction-diffusion model for the process of neurotransmitter release
in the synaptic gap between a nerve and a muscle cell;

• an ODE system, based on chemical reaction schemes, proposed by
Williams, for the process of calcium dynamics inside the muscle cell;

• Hill’s model for the generation of muscle force, triggered by calcium
dynamics.

We study the models numerically to illustrate the behaviour of the model
solutions and to interpret them from a biological point of view. For the
model of calcium dynamics, we also make qualitative analysis and obtain
original results for the asymptotic behaviour of the model solutions.

Further, we propose a framework for coupling the models, mentioned
above, so that we can obtain new integrated multiphysics simulations of
the whole process.

Our initial motivation for the study is the future application of the
proposed approach for modelling neuromuscular diseases. Therefore, the
framework we propose is based on the idea of modelling micro-scale pro-
cesses and studying their effect on the macro-scale muscle action.
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1 Introduction

Neuromuscular disease is a broad term that is connected with a malfunc-
tioning of the neuromuscular system that can affect any part of a nerve or a
muscle. Nowadays, most of the neuromuscular diseases are still incurable, de-
spite the quick development in all areas of human society, including medicine.
An example list of neuromuscular diseases is shown in Fig. 1.

Figure 1: A diagram of some of the neuromuscular diseases [1].

The neuromuscular system combines the nervous system and muscles to
work together and permit movement. Neuromuscular diseases are diseases that
affect the normal functioning of the muscles and/or their control from the ner-
vous system. Such diseases are caused by autoimmune or genetic disorders
as well as contact with environmental chemical substances or other influences
[2]. Therefore, to model such a disease one should apply a detailed integrated
approach—modelling of the nervous system, the resulting muscle activity and
the connection between them. The process of muscle contraction can be mod-
eled as the result of four different consecutive processes—propagation of nerve
impulse, neurotransmitter release in the space between the nerve and the muscle,
the resulting biochemical reactions in the muscle, and the generated contraction.

In this thesis, we shall give a detailed description of the process of muscle
activation and shall propose an integrated mathematical model for the whole
process. Our aim is to lay the foundations for studying the mechanisms of
different neuromuscular diseases in the future.

Biomath Communications 9 (2022), 2212129, 10.55630/bmc.2022.12.129 3/76

https://doi.org/10.55630/bmc.2022.12.129


1.1 The main biological structures in the process

Here, we give a brief information about the structure of a skeletal muscle
and a nerve cell—the two main biological structures that will be of interest for
our further studies.

1.1.1 Skeletal muscle morphology

A general cross-section of a skeletal muscle [3] can be seen in Fig. 2.

Figure 2: Skeletal muscle morphology [4].

The hierarchical structure in the skeletal muscle is described as follows:

• A skeletal muscle is surrounded by fibrous tissue, called epimysium. It
serves as a protection shield and protects the muscle from friction against
other muscles and bones;

• Within the muscle, there is another connective tissue, the perimysium,
which connects muscle fibers into bundles, called fascicles. A large muscle
contains more fibers in each bundle, while a small one contains less;

• Inside the fascicles there is another connective tissue, which isolates each
fiber, called endomysium;

• The endomysium contains the muscle cells/fibers or myofibers, formed in
the process of myogenesis. Every myofiber can have a different length
up to several centimeters, which is the reason that the muscle cells have
multiple nuclei.

In Fig. 3, the structure of a muscle fiber is shown. The membrane of the
muscle cell, called sarcolemma, contains a bunch of tubes called myofibrils—the
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contractile units of the cell. Each muscle fiber contains hundreds or thousands of
myofibrils, which are divided into segments called sarcomeres. The sarcomeres
are the basis for muscle contraction theory, known as the sliding filament theory.

Each sarcomere is separated by a border, called a Z-line or a Z-disc. As in
Fig. 3, the sarcomere is composed of long fibrous proteins. It contains two main
types of long protein chains, called filaments1—thin, made of actin protein
strands and thick—composed of myosin protein strands. Muscle contraction
happens, because of thin and thick filaments sliding past each other through
complex biochemical processes, triggered by calcium dynamics inside the muscle
cell.

Figure 3: A muscle fiber structure [5].

Each muscle cell has the so-called sarcoplasmic reticulum (SR), which is
a membrane-bound network of tubules that wraps the myofibrils. The main
function of the SR is to store calcium ions.

1.1.2 The structure of a nerve cell

A typical neuron consists of the following main parts [6], see Fig. 4:

• dendritic trees—structures in the neuron that receive and process electrical
messages; a single neuron may have more than one set of dendrites and
may receive thousands of input signals;

1We have marked in bold the crucial terms related to the muscle structure that will be
used throughout the MSc thesis.
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• cell body (soma)—a part of the neuron that contains the nucleus. It con-
nects to the dendrites and the axon via which the neuron sends information
to other neurons;

• axon—a long projection that is responsible for carrying electrical impulses
away from the cell body;

• axon terminal (axonal tree)—the end of the axon, which has a tree-like
structure and contains synapses, see Fig. 5, which are responsible for the
injection of pulses of ionic current (or electric charge) into the dendrites
and cell body of other cells in response to signals.

Figure 4: Structure of a motor neuron [7].

Most motor neurons (as well as many other nerve cells) have the so-called
myelin sheath, a lipid-rich substance, which isolates the axon and helps it to
increase the speed at which information (an electrical signal) travels. Myelin
sheath does not cover the axon entirely, but is disrupted at gaps, called nodes
of Ranvier.

When a neuron passes a signal to another neuron or a muscle cell, it transmits
a chemical messenger, called neurotransmitter, that is released from synaptic
vesicles in the synapses of the axonal tree through the synaptic cleft, see Fig.
5.

Figure 5: Structure of a typical chemical synapse [8].
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1.2 The process of muscle activation

To model the process of muscle activity, we shall consider the scheme, pre-
sented in Fig. 6, which gives a possible description of the whole process. We
shall describe the different steps here and shall elaborate further in the corre-
sponding sections later on.

Figure 6: The process of muscle activation.

Nerve impulses, also known as action potentials, are electric signals that
travel from the brain or the spinal cord along the long axons of the motor neurons
to the axon terminals, where the impulses are transferred to the so-called motor
end plate of a skeletal muscle fiber, see Fig. 7. The gap between the axon of
a motor neuron and a motor end plate, where the impulses are transmitted, is
called a neuromuscular junction. The process that leads to a contraction of a

Figure 7: The neuromuscular junction [9].

muscle fiber and its connection with the activity of motor neurons is illustrated
in Fig. 8 and can be described in the following steps [10]:
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1. An impulse travels through the axon of the motor neuron to the axon
terminal;

2. At the axon terminal there are voltage-gated calcium channels, which open
due to the action potential and calcium ions diffuse into the terminal;

3. The calcium presence in the axon terminal opens the so-called synaptic
vesicles to release a neurotransmitter, called acetylcholine (ACh);

4. The released ACh diffuses, crosses the synaptic cleft and binds to ACh
receptors on the motor end plate of the muscle, which contains cation
channels. The cation channels open and sodium ions enter the muscle
fiber, causing potassium ions to exit the muscle fiber;

5. The input flux of the sodium ions changes the membrane potential, causing
depolarization or the so-called end plate potential (EPP). Once the mem-
brane potential reaches a threshold value, an action potential propagates
along the sarcolemma;

6. Inside the muscle cell, the sarcoplasmic reticulum (SR), which is a network
of tubules that regulates calcium concentration, then releases calcium so
that it can bind to contractile filaments (CFs) in the muscle fiber. The
binding of calcium to the CFs (actin and myosin filaments) allows them
to bind to each other and further leads to muscle cell contraction.

Figure 8: The process of a muscle contraction in steps (1)–(6) [11].
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The sliding filament theory, invented separately by two research teams in
the 20th century [12], describes the process of muscle contraction based on
the thin and thick filaments that slide past each other to generate movement,
triggered by the calcium dynamics inside the muscle cell. The process of muscle
contraction is described in Fig. 9 and can be generalized in the following steps
[9]:

• At rest, the myosin molecules inside the thick filaments have adenosine
diphosphate molecules (ADP) and inorganic phosphate molecules (IP),
attached to the individual myosin heads, while the thin filaments contain
actin and different receptors (tropomyosin and troponin). When we move,
the brain sends signals to the muscle cells, which as we discussed causes
calcium to be released from the sarcoplasmic reticulum. Ca2+ ions bind
to the receptors on the actin (thin filaments), which causes the latter to
change shape. Thus, free space is revealed for the myosin to attach. This
is called a cross-bridge;

• After the attachment, the ADP and IP leave the myosin, causing it to
contract, and pull the actin towards it;

• The ADP and IP then combine and form ATP molecules, which again
bind to the myosin and pull it away from the actin;

• After that, the ATP converts back to ADP and IP and the process repeats.

1.3 Goals and structure of the MSc thesis

The main goals of the present MSc thesis are the following:

• To give an overview of the process of neuromuscular activation, allowing
its deconstruction into different subprocesses that can be modelled indi-
vidually (see Fig. 6);

• To identify possible mathematical models (described usually by nonlinear
systems of ordinary and/or partial differential equations) for each part of
the proposed framework;

• To propose effective numerical schemes for solving the chosen mathemat-
ical models;

• To carry out numerical experiments and/or study the models analytically
in order to improve our intuition about the considered biological and bio-
chemical processes;

• To propose a new mathematical model, which couples the considered dif-
ferential problems into an integrated multiphysics model of the whole pro-
cess of muscle activation.

Biomath Communications 9 (2022), 2212129, 10.55630/bmc.2022.12.129 9/76

https://doi.org/10.55630/bmc.2022.12.129


Figure 9: The sliding filament theory [5].

The MSc thesis is structured as follows:

• In Section 2, we describe the process of nerve impulse propagation and
derive the classical Hodgkin–Huxley model for unmyelinated axons (de-
scribed by a system of four PDEs) as well as its modification for myeli-
nated ones (which comprises of a system of differential-difference equa-
tions). Then, we construct numerical schemes for both models and carry
out numerical simulations of nerve impulse propagation;

• In Section 3, we consider a mathematical model, based on the mass action
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law, for the process of calcium dynamics inside the muscle cell, which
is described by a system of two ODEs. We obtain original results for
the qualitative behaviour of the system, which we illustrate with phase
portraits, and make corresponding observations from a biological point of
view. Numerical results are presented for biologically relevant parameter
values, known in the literature;

• The next Section 4 presents the two approaches that we propose for cou-
pling the process of nerve impulse propagation and calcium dynamics.
The first approach assumes a direct relation between the nerve impulse
and the resulting chemical reactions in the muscle cell, while the second
approach considers a 1D reaction-diffusion model for neurotransmitter re-
lease in the neuromuscular junction. To the best of our knowledge, the
particular integrated model, obtained in this way, has not been described
in the scientific literature;

• Section 5 gives a quick idea about the modelling of the force generation in
the muscle. To this end, we couple the calcium dynamics with the classical
Hill’s model;

• Some additional information about the derivation of the Hodgkin–Huxley
model and their experiments as well as some basic notions from the qual-
itative theory of dynamical systems are given in the Appendix.

2 Modelling of nerve impulses

In this section, we shall discuss the process of nerve impulse transmission
and shall use the classical model of Hodgkin–Huxley [13] to model it in the case
of an unmyelinated axon. Further, following the pure saltatory theory [14], we
reformulate the model for the case of a myelinated axon. Numerical results for
known parameters from the literature are presented in both situations.
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2.1 Biological preliminaries

We described the general structure of a nerve cell in Section 1.1.2. Now,
we shall discuss the process of nerve impulse transmission. Since the latter is
basically electric current, flowing down the axon, we need to discuss the electrical
properties of the nerve cell. In particular, we shall describe the membrane
structure, which is essential for the process [13].

2.1.1 Neuron membrane

The cell body and the axon of a neuron are covered by a membrane that is
a bilayer of lipid molecules containing many types of protein structures. These
molecules have a hydrophilic (which stands for water-loving), or polar heads,
and a hydrophobic (“water-fearing”), or non-polar tails, see Fig. 10. The es-
sential property of this bilayer is that it serves as an electric insulator. When

Figure 10: The nerve membrane is mainly constructed of a lipid bilayer [15].

a neuron is at its resting state, there is a potential difference, called a resting
potential, between the inside and outside of the membrane. On both sides of
the membrane, there are unequally distributed variously charged ions, mainly
K+, Na+ and Cl−. This leads to a potential difference, which is measured to
be around −70 mV at resting state. Let us point out the following:

• at resting state, the concentration of sodium ions is higher outside the cell;

• at resting state, the concentration of potassium ions is higher inside the
cell.

Among the molecules of the lipid bilayer there are also ion channels—large
proteins that provide passage across the membrane, see Fig. 11.
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Figure 11: Neural membrane at rest [16].

These proteins are divided in the following groups [17]:

(i) passive/leakage ion channels—they are always open and are located on
the dendrites, cell body, and axon;

(ii) chemically-gated ion channels—proteins, which open to allow ions such as
Na+,K+, Ca2+, or Cl− to cross the neural membrane in response to the
binding of a chemical messenger, i.e., a neurotransmitter;

(iii) voltage-gated ion channels—proteins, located on the axon and at the
synapses, which form ion channels that are activated by changes in the
electrical membrane potential near the channel.

All of the ion channels are selective—they allow only a certain
type and amount of ions to cross, depending on the charge and size of the
ion, and prevent the passage of the others.

Capacitive properties of the membrane

Because of the difference between the electric charges inside and outside the
neuron, the membrane has a very important electrical property. It serves as an
insulator in a capacitor.

Capacitor [18] is a charge-storing component in an electric chain, consisting
of two conductors that have opposite charges and are separated by a dielectric
(insulator), see Fig. 12. The charge difference creates an electric field between
the plates of the capacitor.

The charge Q, stored in the capacitor, is proportional to the voltage V , i.e.,

Q = cV, (1)

where c is called capacitance [19].
From what we said above, it is evident that the lipid bilayer has the property

of a capacitor. It does not allow ions to cross and its hydrophilic heads “play
the role” of the plates in the capacitor.
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Figure 12: A capacitor [20].

2.1.2 Nerve impulse transmission

The nerve impulses are transmitted as a domino effect. Each neuron gets
an impulse and passes it to the next one. When there is a signal, a neuron
receives information by its dendrites and transmits it using its axonal tree. The
process of impulse transmission in a neuron down its axon can be described in
the following steps:

• Resting potential
When a neuron is at rest, more Na+ ions are located outside and more K+

ions are located inside its axon. The difference of the electrical potentials
across its membrane is called the resting membrane potential or the resting
potential. In this state, the membrane is said to be polarized. The
polarization of the neuron means that the electrical charge in its internal
environment is negative with respect to the outside.

• Action potential
When a nerve cell receives a sufficiently strong signal, a so-called action
potential is triggered. It consists of the following steps, depicted in Fig.
13:

◦ Voltage-gated sodium ion channels in the axon membrane open and
allow Na+ to flow through the membrane and inside the axon. This
leads to an increase in the membrane potential, called depolariza-
tion;
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◦ On the following steps, voltage-gated potassium ion channels open,
which allows the potassium to flow out of the neuron, and sodium
channels close;

◦ When no more sodium ions can enter the cell, the voltage decreases,
which is known as repolarization;

◦ Next, the potassium channels close. At this point, the voltage is
below the resting potential, which is known as hyperpolarization;

◦ Finally, the potential rises again and reaches the resting potential.

Figure 13: Membrane potential in time [21].

Until the resting potential is reached another signal cannot pass through the
neuron.

The process, described above, was studied by Hodgkin and Huxley, using
the so-called space clamping technique (see the Appendix), i.e., they kept the
voltage constant along the axon. Otherwise, this process could be thought
to happen at each point in the axon or at each Ranvier node (if the axon is
myelinated). The action potential is first triggered at the soma end of the axon.
When a part of an axon is depolarized, this depolarization spreads down the
length of the axon. The propagation is described in Fig. 14.

2.2 Mathematical modelling of a nerve impulse through an unmyeli-
nated axon

In the early 1950s, Alan Hodgkin and Andrew Huxley studied the membrane
dynamics of the giant axon of the squid (Loligo) [13]. Although derived for a
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Figure 14: Action potential propagation in a nerve axon [22].

specific nerve, their mathematical model set the main concepts for the research
in this field. Because the axon is a long thin projection, a 1D model is considered.
Let us denote the spatial and time variables by x ∈ [0, X] and t ∈ [0, T ],
respectively.

2.2.1 Derivation of the Hodgkin–Huxley model

The mathematical model is based on the following two basic laws (for their
derivation, see the Appendix) [13]:

• The charge conservation law:

j = − ∂i
∂x
, (2)

where i = i(x, t) is the longitudinal (x-directed) current at time t and
point x of the axon (see Fig. 15), and

j(x, t) = jc(x, t) + jm(x, t) (3)

is the total electric current per unit length of the fiber. It consists (as
evident from the discussion in Section 2.1) of the transmembrane current,
jm (the ionic transport, primarily of K+, Na+ ions, through the voltage-
gated channels), and the capacitive current, jc (due to the properties of
the axon membrane as a capacitor).
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• Ohm’s law:

i(x, t) = − 1

R

∂V

∂x
(x, t), (4)

where V is the transmembrane voltage and R is the longitudinal resistance
per unit length of the fiber, which is assumed to be constant along the
axon.

Figure 15: Electric current in an axon [13].

Combining equations (2), (3), and (4), the longitudinal current is eliminated to
finally obtain the so-called Cable equation:

jc + jm =
1

R

∂2V

∂x2
. (5)

To model the capacitive current, we differentiate eq. (1) and derive

jc =
∂Q

∂t
= c

∂V

∂t
. (6)

For the transmembrane current, Hodgkin and Huxley performed elaborate ex-
periments for different voltages V (see the Appendix) and derived the following
empirical expression [13]:

jm = GNam
3h(V − VNa)︸ ︷︷ ︸

Na+ current

+GKn
4(V − VK)︸ ︷︷ ︸

K+ current

+GL(V − VL)︸ ︷︷ ︸
leakage current

, (7)

where:

• GNa and GK are the maximum sodium and potassium conductances (or
permeabilities) per unit area;

• VNa and VK are equilibrium voltages at which transmembrane sodium and
potassium currents, respectively, are equal to 0;

• m(x, t) is a “sodium turn-on” variable, which describes the opening of the
Na+ channels;

• h(x, t) is a “sodium turn-off” variable, which describes the closing of the
Na+ channels;
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• n(x, t) is a potassium “turn-on” variable, which describes the opening of
the K+ channels.

The last term in (7) introduces a small leakage current, accounting for missed
ionic measurements.

In their model, for the membrane turn-on and turn-off variables, Hodgkin
and Huxley assumed that m, h, and n are the solutions of a system of first-order
differential equations:

∂m

∂t
= −

m−m0(V )

τm(V )
,

∂h

∂t
= −

h− h0(V )

τh(V )
,

∂n

∂t
= −

n− n0(V )

τn(V )
,

(8)

where
m0(V ) = αm/(αm + βm),

τm(V ) = 1/(αm + βm),

h0(V ) = αh/(αh + βh),

τh(V ) = 1/(αh + βh),

n0(V ) = αn/(αn + βn),

τn(V ) = 1/(αn + βn).

(9)

The coefficients in the above equations are measured at a given temperature
of 6.8◦ (an additional scaling factor that accounts for changes in temperature
could be introduced, but we do not include it here):

αm =
0.1(25− V )

exp[(25− V )/10]− 1
,

βm = 4 exp[−V/18],

αh = 0.07 exp[−V/20],

βh =
1

exp[(30− V )/10] + 1
,

αn =
0.01(10− V )

exp[(10− V )/10]− 1
,

βn = 0.125 exp[−V/80].

(10)

Some additional intuition about m, n, and h is developed in the Appendix.
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2.2.2 The Hodgkin–Huxley model

For convenience, we formulate here the complete model by coupling (5)–(8):

1

R

∂2V

∂x2
= c

∂V

∂t
+ jm, 0 < x < X, 0 < t ≤ T,

∂m

∂t
= −m−m0(V )

τm(V )
, 0 ≤ x ≤ X, 0 < t ≤ T,

∂n

∂t
= −n− n0(V )

τn(V )
, 0 ≤ x ≤ X, 0 < t ≤ T,

∂h

∂t
= −h− h0(V )

τh(V )
, 0 ≤ x ≤ X, 0 < t ≤ T,

(11)

where

jm = GNam
3h(V − VNa) +GKn

4(V − VK) +GL(V − VL).

The system is closed with initial conditions:

V (x, 0) = Vinit(x),

m(x, 0) = minit(x),

n(x, 0) = ninit(x),

h(x, 0) = hinit(x),

(12)

for x ∈ [0, X] and two boundary conditions for V . We shall later consider both
Dirichlet and Neumann boundary conditions.

Remark. Usually, it is assumed that the voltage is scaled, such that at resting
state it is equal to 0. We shall follow the same convention.

2.2.3 Numerical schemes

We shall derive a finite difference approximation of equations (11) and the
corresponding initial and boundary conditions. Let us introduce a uniform mesh

ω∆x,∆t :=

{
(xi, tj) : xi = i∆x, tj = j∆t, i = 0, n, j = 0,m, n =

X

∆x
,m =

T

∆t

}
.

We further denote the values of the approximate solutions for m, n, and h at
node (xi, tj) with M j

i , N
j
i , and Hj

i , respectively, and the approximate solution

for the voltage V with Y ji .
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Approximation of the main equations

We approximate the time derivatives in (11), using the forward difference
formula, and the second spatial derivative with second order central difference
formula [23]. Thus, we obtain the following explicit two-layer finite difference
approximations:

1

R

Y ji+1 − 2Y ji + Y ji−1

∆x2
= c

Y j+1
i − Y ji

∆t
+ j̃m(xi, tj), i = 1, n− 1, j = 0,m− 1,

M j+1
i −M j

i

∆t
= −M

j
i −m0(Y ji )

τm(Y ji )
, i = 0, n, j = 0,m− 1,

Hj+1
i −Hj

i

∆t
= −H

j
i − h0(Y ji )

τh(Y ji )
, i = 0, n, j = 0,m− 1,

N j+1
i −N j

i

∆t
= −N

j
i − n0(Y ji )

τn(Y ji )
, i = 0, n, j = 0,m− 1,

where

j̃m(xi, tj) := GNa(M j
i )3Hj

i

(
Y ji − VNa

)
+GK(N j

i )4(Y ji − VK) +GL(Y ji − VL).

We rewrite the equations in the following form:

Y j+1
i =

∆t

cR∆x2

(
Y ji+1 + Y ji−1

)
+

(
1− 2∆t

cR∆x2

)
Y ji −

∆t

c
j̃m(xi, tj),

M j+1
i =

(
1− ∆t

τm(Y ji )

)
M j
i +

∆t

τm(Y ji )
m0(Y ji ),

Hj+1
i =

(
1− ∆t

τh(Y ji )

)
Hj
i +

∆t

τh(Y ji )
h0(Y ji ),

N j+1
i =

(
1− ∆t

τn(Y ji )

)
N j
i +

∆t

τn(Y ji )
n0(Y ji ).

(13)

Approximation of the initial conditions

The initial conditions (12) are approximated exactly:

Y 0
i = Vinit(xi), M0

i = minit(xi), N0
i = ninit(xi), H0

i = hinit(xi), (14)

for i = 0, n.
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Approximation of the boundary conditions

• Dirichlet boundary conditions

If we consider a Dirichlet boundary condition at x = 0, i.e.

V (0, t) = Vleft(t), 0 ≤ t ≤ T,

it can be approximated exactly as

Y j0 = Vleft(tj), j = 0,m. (15)

Analogously, for Dirichlet boundary condition on the right boundary, we
obtain

Y jn = Vright(tj), j = 0,m.

• Neumann boundary conditions

If we consider a Neumann boundary condition at x = 0, i.e.

∂V

∂x
(0, t) = Vleft(t), (16)

we can approximate the spatial derivative by using first order forward
difference formula and obtain

Y j1 − Y
j
0

∆x
= Vleft(tj), j = 0,m. (17)

The local approximation error (LAE) of the approximations (13) is O(∆x2

+ ∆t). However, if we use (17), the LAE of the whole finite difference
scheme would degenerate to O(∆x + ∆t), because of the usage of the
forward difference formula. Therefore, in order to increase the order of
approximation of the boundary condition, we shall use a standard tech-
nique [23]. Let us denote V ji to mean the value of the exact solution V
at the mesh point (xi, tj). Then, for the LAE of (17), using a Taylor
expansion about x = 0, we consecutively obtain

ψ∆x,∆t =
V j1 − V

j
0

∆x
− Vleft(tj)

=
1

∆x

(
V j0 +

∂V

∂x

∣∣∣j
0
∆x+

∂2V

∂x2

∣∣∣j
0

∆x2

2
+O(∆x3)− V j0

)
− Vleft(tj)

=
∆x

2

∂2V

∂x2

∣∣∣∣j
0

+O(∆x2). (18)

Therefore, the following equality holds true:

V j1 − V
j
0

∆x
− ∆x

2

∂2V

∂x2

∣∣∣∣j
0

= Vleft(tj) +O(∆x2).
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Finally, assuming that the cable equation (i.e., the first equation in (11))
is fulfilled also for x = 0 with a sufficient accuracy, we can express the
second order spatial derivative in terms of the time derivative and obtain
the following approximation with LAE O(∆x2 + ∆t):

Y j+1
0 =

2∆t

cR∆x2
Y j1 +

(
1−

2∆t

cR∆x2

)
Y j0 −

∆t

c
j̃m(x0, tj)−

2∆t

cR∆x
Vleft(tj),

j = 0,m− 1. (19)

Analogously, for a right Neumann boundary condition

∂V

∂x
(X, t) = Vright(t),

we can obtain:

Y j+1
n =

2∆t

cR∆x2
Y jn−1 +

(
1−

2∆t

cR∆x2

)
Y jn −

∆t

c
j̃m(xn, tj)

+
2∆t

cR∆x
Vright(tj), j = 0,m− 1. (20)

2.2.4 Numerical experiments

In this section, we shall present numerical simulations based on the im-
plementations of the finite difference schemes that we derived in the previous
section, using CAS Wolfram Mathematica. On one hand, we shall, thus, vali-
date the applicability of the proposed schemes and get a further intuition about
the process of nerve impulse propagation. On the other hand, the simulated
impulses could be used as an input for the modelling of calcium dynamics as
discussed later in the thesis.

The model parameters, used for the numerical simulations, are shown in
Table 1.

Parameter Value Parameter Value
c 1 µF/cm2 R 10Ω

GNa 120 mmhos/cm2 VNa 115 mV
GK 36 mmhos/cm2 VK −12 mV
GL 0.3 mmhos/cm2 VL 10 mV

Table 1: Parameters for the Hodgkin–Huxley model of an unmyelinated squid nerve
cell’s axon [13].
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Experiment 1 (Single stimulus input).
We consider the following initial and boundary conditions for the model (11):

V (x, 0) =
100√
π
e−(x/5)2 ,

∂V

∂x
(0, t) =

∂V

∂x
(X, t) = 0,

m(x, 0) = m0(0), n(x, 0) = n0(0), h(x, 0) = h0(0).

(21)

As an initial condition for V , we have used Gaussian bell curve, while as initial
conditions for m, n, and h we have chosen their resting states. We model the
situation, when the initial segment of the axon has been depolarized and we
simulate a single action potential. Thus, we implement the finite difference
scheme (13), (14), (19), and (20), where the numerical domain x ∈ [0, 10],
t ∈ [0, 30] is discretized with ∆x = 0.1 and ∆t = 0.005.
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Figure 16: Experiment 1: Nerve impulse propagation.

Numerical results are obtained by using CAS Wolfram Mathematica and are
shown in Fig. 16. The results show that the nerve impulse is transmitted as a
travelling wave. In response to the initial stimulus, the beginning of the axon
is depolarized. Further, this depolarization is spread along the axon, while the
segments adjacent on the left to the wave front are getting repolarized and then
hyperpolarized. In Fig. 16(d), on the left boundary, the axon is returning to its
resting state.
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Experiment 2 (Square wave stimulus input).
We consider the following initial and boundary conditions for the model (11):

V (x, 0) = 0, V (0, t) = µ(t),
∂V

∂x
(X, t) = 0,

m(x, 0) = m0(0), n(x, 0) = n0(0), h(x, 0) = h0(0),
(22)

where µ(t) is a piecewise constant function, which is chosen to describe a periodic
impulse signal. The latter function is depicted in Fig. 17. The simulation of

10 20 30 40
t

10

20

30

40

50

60

μ(t)

Figure 17: Experiment 2: The graph of the function µ(t), which is imposed as a
boundary condition.

nerve impulse propagation, based on the finite difference scheme (13), (14),
(15), and (20), for X = 20 is shown in Fig. 18. As can be seen in the latter,
the boundary condition on the left boundary, imposed with the function µ(t),
generates impulses on a periodic range of time. Let us note that in order for
another impulse to be generated, the left boundary of the axon should be first
returned to a resting state.
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Figure 18: Experiment 2: Nerve impulse propagation.
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Experiment 3 (Weak initial stimulus).
We consider the following initial and boundary conditions for the model (11):

V (x, 0) =
25√
π
e−(x/5)2 ,

∂V

∂x
(0, t) =

∂V

∂x
(X, t) = 0,

m(x, 0) = m0(0), n(x, 0) = n0(0), h(x, 0) = h0(0).

(23)

Numerical results for X = 5 are presented in Fig. 19. Since the initial stimulus
is not strong enough, a nerve impulse is not transmitted through the axon.
Thus, the axon quickly returns to its resting state.
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Figure 19: Experiment 3: Nerve impulse propagation.

2.3 Mathematical modelling of a nerve impulse through a myeli-
nated axon

In the peripheral nervous system, motor neurons are covered with the so-
called myelin sheath. The myelin sheath of the neuron’s axon is a substance, rich
in lipids, which helps for the proper functioning of the motor neuron by provid-
ing insulation and protection from the environment, reducing the membrane
capacitance and speeding the nerve impulse propagation through the axon.
The sheath of myelin is not continuous along the axon of the neuron—it is
interrupted periodically at myelin-sheath gaps, called Ranvier nodes. Since the
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Figure 20: Structure of a myelinated nerve fiber and its corresponding electrical circuit
[26].

myelinated axon can be very long, it could contain hundreds or thousands of
Ranvier nodes. When an impulse is propagated along a myelinated axon, it
“jumps” from node to node, which is known as saltatory propagation of im-
pulses [24]. Often the nerve propagation failure is due to some damage
of the covering myelin sheath. A typical motor neuron structure was shown
in Fig. 4.

2.3.1 The discrete Hodgkin–Huxley model

The myelin sheath allows the axon to conduct neuroelectric signals by ex-
citing only a small percentage of the membrane—the one that is exposed to the
extracellular medium at the nodes of Ranvier, see [25]. Most of the mathemati-
cal models for myelinated axons assume that the membrane resistance is so high
and has such a low capacitance that it fully isolates the membrane of the axon.
The latter is referred to as pure saltatory theory. Thus, when a membrane is
depolarized at a certain Ranvier node, we shall assume that it does not tend
to depolarize the adjacent part of the axon, but it excites the membrane at the
next node.

To model the nerve propagation in this case, we shall consider a spatially
discrete Hodgkin–Huxley system that was described by R. Fitzhugh in [24] and
A. Carpio in [26].

Derivation of the main equations

The behavior of the nerve impulse transmission can be described by a lumped
element model of electrical circuits, see Fig. 20. Let k = 0, n denote the index of
the corresponding Ranvier node (see Fig. 20). To model the nerve transmission,
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we shall apply Kirchhoff’s current law, which states that the current, flowing
into a node, is equal to the current, flowing out. Therefore, if we consider the
k-th Ranvier node in an axon, we can write

Ik = Ik+1 + j(k), (24)

where Ik and Ik+1 are the currents flowing in and out of the k-th Ranvier node
and

j(k) = jc(k) + jm(k)

is the sum of the transmembrane and the capacitive current at the k-th node.
Analogously, one can apply Kirchhoff’s voltage law2, combined with Ohm’s law,
to obtain

Vk−1 − Vk = RIk, (25)

where Vk is the membrane voltage at the k-th node and R is the resistance of
the axonal membrane. By expressing Ik and Ik+1 at the internal nodes, using
(25), and substituting in (24), we derive

c
dVk
dt

=
1

R
(Vk+1 − 2Vk + Vk−1)− jm(Vk,mk, hk, nk), k = 1, n− 1,

jm = GNam
3
khk(Vk − VNa) +GKn

4
k(Vk − VK) +GL(Vk − VL).

(26)

In the case of k = 0, for our numerical experiments, we shall consider two
different conditions:

• V0(t) = Vleft(t)—an analogue of the Dirichlet condition;

• A discrete analogue of a no-flux boundary condition:

c
dV0

dt
+ jm(V0,m0, n0, h0) =

V1 − V0

R
. (27)

The latter is derived by using Kirchoff’s laws at k = 0 and assuming that
I0 = 0:

c
dV0

dt
+ jm(V0,m0, n0, h0) = −I1

−V1 + V0 = RI1.

Analogous conditions can be imposed for k = n.
Similarly to Section 2.2, mk, nk, and hk, k = 0, n, satisfy the system

dmk

dt
= −mk − m̃0(Vk)

τ̃m(Vk)
,

dnk
dt

= −nk − ñ0(Vk)

τ̃n(Vk)
,

dhk
dt

= −hk − h̃0(Vk)

τ̃h(Vk)
,

(28)

2The directed sum of the potential differences (voltages) around any closed loop is zero
[27].
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where m̃0, h̃0, ñ0, τ̃m, τ̃n, τ̃h are m0, h0, n0, τm, τn, τh from (9).

2.3.2 Numerical experiments

We solve the ODE system (26), (28) for t ∈ [0, 50], closed with corresponding
conditions, using the forward Euler method with a time-discretization step ∆t =
0.005. For our numerical experiments we shall compare the propagation of nerve
impulses in myelinated and unmyelinated axons, using again the parameters,
considered in Table 1.

Experiment 1 (Single stimulus input).
We consider the following conditions for the ODE system (26), (28):

Vk(0) =
4√
π
e−(2k/5)2 , mk(0) = m̃0(0),

nk(0) = ñ0(0), hk(0) = h̃0(0), k = 0, n,

c
dV0

dt
+ jm(V0,m0, n0, h0) =

V1 − V0

R
,

c
dVn
dt

+ jm(Vn,mn, nn, hn) =
Vn−1 − Vn

R
.

(29)

Similarly to Section 2.2.4, as an initial condition for the voltage V at the k-th
Ranvier node, i.e., Vk, we have considered a “discrete Gaussian bell curve”, de-
fined only at the Ranvier nodes, while as initial conditions for mk, nk and hk
we have used their resting states. We model the case when the initial segment
is depolarized, in result of a single stimulus. The numerical results are shown
in Fig. 21. For visualization purposes, we have interpolated between the values
at the Ranvier nodes in the case of a myelinated axon. Let us note that the
k-th Ranvier node is assumed to be at x = 2k, k = 0, n. As can be seen in the
latter figure, the myelin sheath on the nerve cell’s axon significantly improves
the speed of the nerve impulse propagation.

Experiment 2 (Square wave stimulus).
The difference with the previous experiment is only that we shall consider a
periodic stimulus on the left boundary of the axon, modelled by the piecewise
constant function µ(t), described in the previous section and depicted in Fig.
17.

The numerical results are shown in Fig. 22. Analogously to the single
impulse simulation, the results show that the myelin sheath of the axon improves
the speed of nerve impulse propagation. As evident from Fig. 22(d), in the
unmyelinated axon the first impulse is still propagating, when the second one is
generated, while on the myelinated axon the first impulse has been transmitted
and the second one is quickly reaching the end of the axon.
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Figure 21: Experiment 1: Comparison between the myelinated (left) and unmyelinated
(right) neuron for a single stimulus.
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Figure 22: Experiment 2: Comparison between the myelinated (left) and unmyelinated
(right) axon for a periodic stimulus.
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2.4 Conclusion and discussion

In this section, we have derived the classical Hodgkin–Huxley model for the
neural impulse propagation along a nerve’s axon and its modification, described
in terms of differential-difference equations, for the case of myelinated axons.
We have carried out numerical experiments in both cases for biologically rele-
vant values of the model parameters. As evident from them, the myelin sheath
of the axon highly improves the speed of propagation of the nerve impulses.
Therefore, destroying the myelin sheath (which is one possible malfunctioning,
connected with neuromuscular diseases) could be very harmful for the normal
functioning of the neuromuscular system. The considered models allow to study
those effects, by simulating the case of (partially) demyelinated axons, which
is a direction for our future studies. Furthermore, since it is well known that
using the Hodgkin–Huxley model is very expensive from a computational point
of view, one could consider some of its simplifications. In particular, we shall
mention the Fitzhugh–Nagumo model that is often used for obtaining qualita-
tive information about the neural impulse propagation (see, e.g., [13] and the
references therein).

3 Modelling of calcium dynamics

In this section, we shall study a model for the calcium dynamics in the
muscle cell, based on mass action kinetics. The latter is a result from the nerve
impulse transmission in a nerve cell and the transported neurotransmitter in the
neuromuscular junction, which will be discussed in Section 4. A brief description
of the process was given in Sections 1.1.1 and 1.2.

The main results in this section are also published in [28].
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3.1 Mathematical model

As discussed earlier, when a nerve impulse comes to the muscle, the action
potential results in the release of Ca2+ ions from the SR. Ca2+ ions then flow
into the sarcomere where the CFs are situated. Then, Ca2+ ions start binding
to the receptors in the CFs and as a result, the filaments start sliding, causing
the sarcomere to shorten. When the stimulus is turned off, the Ca2+ ions are
transported back into the SR and the sarcomere relaxes. Having in mind the
aforementioned, one needs to model the dynamics of calcium ions, sarcoplasmic
reticulum (SR), and contractile filaments (CFs), in order to understand the
process of muscle contraction.

For this purpose, we consider a mass action kinetics model, proposed by
Williams [29], further considered by McMillen [30] and used by Meredith in
[9]. The model is based on the principle of mass action kinetics, which assumes
that the rate of a chemical reaction is proportional to the concentration of the
reactants. Let us denote the following, see Fig. 23:

• c—concentration of free calcium ions;

• ru—concentration of unbound sarcoplasmic reticulum sites;

• rb—concentration of bound sarcoplasmic reticulum sites;

• fu—concentration of unbound CF sites;

• fb—concentration of bound CF sites;

• k1—rate of release of calcium ions from the SR;

• k2—rate of binding of calcium ions to the SR;

• k3—rate of binding of calcium ions to the CFs;

• k4—rate of release of calcium ions from the CFs.

The kinetic scheme of calcium dynamics is illustrated in Fig. 23: Based on the

Figure 23: Kinetic scheme for calcium dynamics [29].

principle of mass action, the following statements are valid:
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1. When the stimulus is on, i.e., when there is an action potential in the mus-
cle cell, the rate of unbinding of calcium ions from the SR is proportional
to the concentration of calcium-bound SR sites with a rate constant k1;

2. When the stimulus is off, the rate of binding of calcium ions to the SR is
proportional to the product of the concentrations of free calcium ions and
unbound SR calcium-binding sites with a rate constant k2;

3. The rate of binding of calcium ions to the CF is proportional to the product
of the concentrations of free calcium ions and unbound filament sites with
a rate constant k3.

Further, because of empirical evidence, the rate of release of calcium ions from
the CF is chosen to be proportional to the product of concentration of bound
and unbound filament sites with a rate constant k4. This is meant to account
for some cooperativity between the bound and unbound CF sites in the process
of calcium release.

In mathematical terms, the above assumptions result in the following system
of five ODEs:

dc

dt
= k1rb − k2ruc− k3fuc+ k4fbfu,

drb
dt

= −k1rb + k2ruc,

dru
dt

= k1rb − k2ruc,

dfb
dt

= k3cfu − k4fbfu,

dfu
dt

= −k3cfu + k4fbfu,

(30)

where k1 and k2 are non-negative coefficients and k3, k4 are positive constants.
Further, the following assumptions are made by Williams [29]:

1. when the stimulus is on, k1 > 0, k2 = 0;

2. when the stimulus is off, k1 = 0, k2 > 0;

3. the total amount of calcium is constant:

c+ fb + rb = C; (31)

4. the total numbers of bound and unbound SR and CF sites are constant,
i.e,

ru + rb = S,

fb + fu = F, (32)

where S and F are the total numbers of SR and CF sites.
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By using assumptions (31)–(32), we reduce the ODE system (30) to the following
two-dimensional model for the concentrations of free calcium ions and calcium-
bound sites:

dc

dt
= (k4fb − k3c) (F − fb) + k1 (C − c− fb) + k2c (C − S − c− fb) ,

dfb
dt

= − (k4fb − k3c) (F − fb) .
(33)

Further, we scale the model by the total amount of the CF sites F :

f̂b = fb/F, ĉ = c/F, Ĉ = C/F, Ŝ = S/F,

k̂2 = Fk2, k̂3 = Fk3, k̂4 = Fk4.
(34)

Substituting (34) in (33) and skipping the hats for notational simplicity, we
obtain

dc

dt
= (k4fb − k3c) (1− fb) + k1 (C − c− fb) + k2c (C − S − c− fb) ,

dfb
dt

= − (k4fb − k3c) (1− fb) .
(35)

Remark. The above scaling leads to certain restrictions for fb and c, which we
shall use later in the qualitative analysis of the system (35). Dividing both sides
of (31) and (32) by F , we derive:

ĉ+ f̂b + r̂b = Ĉ,

f̂b + f̂u = 1.

From the latter equations and ĉ ≥ 0, f̂b ≥ 0, r̂b ≥ 0, f̂u ≥ 0, we obtain the
restrictions

0 ≤ ĉ+ f̂b ≤ Ĉ,

0 ≤ f̂b ≤ 1.

Therefore, system (35) is considered in the phase space

{(c, fb) ∈ R2 : 0 ≤ c+ fb ≤ C, 0 ≤ fb ≤ 1, c ≥ 0}. (36)

3.2 Qualitative analysis of model’s dynamics in the limiting cases
k1 = 0, k2 = 0

In this section, we shall study qualitatively the system of differential equa-
tions (35). Some basic notions from the theory of dynamical systems is given in
the Appendix. We shall consider the two limiting cases—when the stimulus is
on, i.e., when k2 = 0, k1 > 0, and when the stimulus is off, i.e., k1 = 0, k2 > 0.
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3.2.1 Case k1 > 0, k2 = 0.

Let us first consider the case when the rate constant for binding of calcium
to the sarcoplasmic reticulum (SR) k2 is equal to zero. Thus, the system we
consider is:

dc

dt
= (k4fb − k3c) (1− fb) + k1 (C − c− fb) ,

dfb
dt

= − (k4fb − k3c) (1− fb) .
(37)

Existence of equilibrium points

The equilibria of the system (37) are the solutions of the system of algebraic
equations

(k4fb − k3c) (1− fb) + k1 (C − c− fb) = 0,

− (k4fb − k3c) (1− fb) = 0.

Solving the latter system, we find two possible equilibrium points:

E1 = (C − 1, 1) and E2 =

(
Ck4

k3 + k4
,
Ck3

k3 + k4

)
.

First, let us consider the conditions for the existence of the equilibrium points.

Proposition 1. The equilibrium point E1 exists iff C ≥ 1. The equilibrium

point E2 exists exactly when 0 ≤ C ≤
k3 + k4

k3
.

Proof. In order for the equilibrium points to exist (i.e., to be in the phase
space) they must satisfy the restrictions (36). Therefore, we substitute the
concentrations for c and fb, corresponding to the two equilibrium points, to
obtain conditions for their existence.

• Equilibrium E1 = (C − 1, 1) .
We substitute c = C − 1 and fb = 1 in (36) and derive the existence
condition C ≥ 1.

• Equilibrium E2 =

(
Ck4

k3 + k4
,
Ck3

k3 + k4

)
.

We substitute the latter in (36) and derive:

0 ≤
Ck4

k3 + k4
+

Ck3

k3 + k4
≤ C,

0 ≤
Ck3

k3 + k4
≤ 1.
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The first inequalities are trivially fulfilled, while the latter one is satisfied

for 0 ≤ C ≤
k3 + k4

k3
.

Local stability of equilibrium points

To analyze the local stability of the equilibrium points we use the Hartman–
Grobman theorem, i.e., we consider the linearization of the system about each
of them and analyze the corresponding linear systems (see the Appendix). The
Jacobi matrix of (37) as a function of the phase variables c and fb is:

J(c, fb) =

(
−k3(1− fb)− k1 k4(1− fb)− k4fb + k3c− k1

k3(1− fb) −k4(1− fb) + k4fb − k3c

)
.

Proposition 2. The conditions for the stability of the equilibrium points E1

and E2 are given in Table 2, where C is chosen as a bifurcation parameter.

C 0 < C < 1 1 < C <
k3 + k4

k3
C >

k3 + k4

k3

E1 @ saddle stable
E2 stable stable @

Table 2: Classification of equilibria for the case k2 = 0 in terms of C.

Proof. We shall analyze the stability of the equilibrium points separately.

1. Local stability of E1 = (C − 1, 1).
As derived in Proposition 1, the condition for the existence of the equilib-
rium point is C ≥ 1. Substituting E1 in the Jacobi matrix, we derive:

J(E1) =

(
−k1 −k4 + k3(C − 1)− k1

0 k4 − k3 (C − 1)

)
.

For the eigenvalues λ1, λ2 of J(E1), we have

λ1 = −k1 < 0, λ2 = k4 − k3(C − 1).

Using the latter, we consider two cases for determining the stability of E1:

• k4 − k3 (C − 1) > 0 ⇐⇒ C <
k3 + k4

k3
.

In this case, the eigenvalues are with opposite signs. That is, the
equilibrium is a saddle point.
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• k4 − k3 (C − 1) < 0 ⇐⇒ C >
k3 + k4

k3
In this case, both eigenvalues are negative and E1 is asymptotically
stable.

2. Local stability of E2 =

(
Ck4

k3 + k4
,
Ck3

k3 + k4

)
.

We compute the Jacobi matrix at E2:

J(E2) =


−k3

(
1−

Ck3

k3 + k4

)
− k1 k4

(
1−

Ck3

k3 + k4

)
− k1

k3

(
1−

Ck3

k3 + k4

)
−k4

(
1−

Ck3

k3 + k4

)


and obtain

λ1λ2 = detJ(E2) = k1 (k4 − k3(C − 1)) ,

λ1 + λ2 = traceJ(E2) = −k1 − k4 + k3 (C − 1) .

By the existence condition for E2, derived in Proposition 1, we conclude
that the determinant is always positive, with λ1 + λ2 < 0 and, therefore,
the equilibrium is asymptotically stable, whenever it exists.

Numerical experiments

In this section, we give example phase portraits for the three different cases,
considered in the classification of the equilibria in Proposition 2. For the nu-
merical experiments, we consider the model parameters, taken from Table 5:

k1 = 9.6, k3 = 65, k4 = 45,

and S = 2. Let us note that the initial conditions for the system (37) must
satisfy conditions (36).

Experiment 1. We consider the following parameter value—C = 0.8, which
corresponds to the case 0 < C < 1. Thus, as concluded in Proposition 2, in this

case the point E1 = (C−1, 1) does not exist, while E2 =

(
k4C

k3 + k4
,
k3C

k3 + k4

)
is

asymptotically stable. The numerical results are shown in Fig. 24 and confirm
the analytical conclusions.

Experiment 2. We consider the parameter C = 1.6, which corresponds to the

case 1 < C <
k3 + k4

k3
. By Proposition 2, in this case the equilibrium point
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Figure 24: Phase portrait for the case k2 = 0 with parameter value C = 0.8. E1 does
not exist, while E2 is a stable equilibrium.

E2
E1

0.0 0.5 1.0 1.5
c0.0
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0.6

0.8

1.0

fb

Figure 25: Phase portrait for the case k2 = 0 with parameter value C = 1.6. E1 is a
saddle point, E2 is a stable equilibrium.

E1 = (C − 1, 1) is a saddle point, while E2 =

(
k4C

k3 + k4
,
k3C

k3 + k4

)
is again

asymptotically stable. The numerical results confirm the conclusions in the
Proposition and are depicted in Fig. 25.

Experiment 3. In this experiment, we consider the parameter C = 2, which

corresponds to the case C >
k3 + k4

k3
. Following Proposition 2, E1 = (C − 1, 1)

is to be asymptotically stable, while E2 =

(
k4C

k3 + k4
,
k3C

k3 + k4

)
does not exist.

The numerical results are shown in Fig. 26. Again, the numerical experiments
are in agreement with the analytic results.
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Figure 26: Phase portrait for the case k2 = 0 with parameter value C = 2. E1 is a
stable equilibrium, E2 does not exists.

Remark. By the corresponding results in Fig 24, 25, and 26, we can further
suppose that the locally stable equilibrium points in each of the considered ex-
periments are also globally asymptotically stable.

3.2.2 Case k1 = 0, k2 > 0.

Let us now consider the case, when the rate constant for release of calcium
from the sarcoplasmic reticulum (SR), k1, is equal to zero. Thus, we consider
the following system:

dc

dt
= (k4fb − k3c) (1− fb) + k2c (C − S − c− fb) ,

dfb
dt

= − (k4fb − k3c) (1− fb) .
(38)

Existence of equilibrium points

To find the equilibrium points of the latter system of ODEs, we solve the
system of algebraic equations

(k4fb − k3c) (1− fb) + k2c (C − S − c− fb) = 0, (39)

− (k4fb − k3c) (1− fb) = 0. (40)

The solutions of (40) are fb = 1 and fb =
k3

k4
c. Substituting the latter in (39),

we derive the following four solutions of the system (39)–(40) and, therefore,
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four possible equilibrium points to the system (38):

E1 = (0, 1), E2 = (C − S − 1, 1), E3 = (0, 0), E4 =

(
k4(C − S)

k3 + k4
,
k3(C − S)

k3 + k4

)
.

We shall derive conditions for the existence of each of the equilibrium points
E1–E4 in terms of the total amount of calcium C.

Proposition 3. The following statements are valid:

• Equilibrium point E1 exists exactly when C ≥ 1;

• Equilibrium points E2 exists if and only if C ≥ S + 1;

• Equilibrium point E3 exists for every choice of the parameters in the model
(38);

• Equilibrium point E4 exists iff S ≤ C ≤ S +
k3 + k4

k3
.

Proof. We shall derive the conditions for the existence of the equilibrium points
separately.

1. Existence of E1 = (0, 1).
Taking into consideration the inequalities in (36) and substituting c = 0
and fb = 1, we obtain the condition C ≥ 1.

2. Existence of E2 = (C − S − 1, 1).
We substitute the values for c and fb in (36) and derive C − S − 1 ≥ 0
⇐⇒ C ≥ S + 1.

3. Existence of E3 = (0, 0).
The existence of this equilibrium is trivial since the point (0,0) satisfies the
conditions in (36) and, therefore, exists for every choice of the parameters
in the model (38).

4. Existence of E4 =

(
k4(C − S)

k3 + k4
,
k3(C − S)

k3 + k4

)
.

Substituting the latter in the inequalities in (36), we derive

0 ≤
k4(C − S)

k3 + k4
+
k3(C − S)

k3 + k4
≤ C

0 ≤
k3(C − S)

k3 + k4
≤ 1.

Taking into consideration the positivity of the constants k3, k4, we derive

the condition S ≤ C ≤ S +
k3 + k4

k3
.
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Local stability of equilibrium points

Proposition 4. The conditions for the stability of the equilibrium points E1 =

(0, 1), E2 = (C −S − 1, 1), E3 = (0, 0), and E4 =

(
k4(C − S)

k3 + k4
,
k3(C − S)

k3 + k4

)
of

the system (38), where C is chosen as a bifurcation parameter, given in Table
3 for the case S < 1 and in Table 4 for the case S > 1, are valid.

C 0 < C < S S < C < 1 1 < C < S + 1 S + 1 < C < S +
k3 + k4

k3
C > S +

k3 + k4

k3

E1 @ @ saddle unstable unstable
E2 @ @ @ saddle stable
E3 stable saddle saddle saddle saddle
E4 @ stable stable stable @

Table 3: Classification of equilibria for the case k1 = 0 in terms of the total amount
of calcium ions C, when S < 1 holds.

C 0 < C < 1 1 < C < S S < C < S + 1 S + 1 < C < S +
k3 + k4

k3
C > S +

k3 + k4

k3

E1 @ saddle saddle unstable unstable
E2 @ @ @ saddle stable
E3 stable stable saddle saddle saddle
E4 @ @ stable stable @

Table 4: Classification of equilibria for the case k1 = 0 in terms of the total amount
of calcium ions C, when S > 1 is valid.

Proof. Let us consider the four possible equilibrium points:

E1 = (0, 1), E2 = (C−S− 1, 1), E3 = (0, 0), E4 =

(
k4 (C − S)

k3 + k4
,
k3 (C − S)

k3 + k4

)
.

We linearize the system of equations (38) to analyze the stability of the equi-
libria, by using the Hartman–Grobman theorem. The Jacobi matrix for the
linearization of the system is

J(c, fb) =

(
−k3 (1− fb) + k2 (C − S − 2c− fb) k4 + k3c− 2k4fb − k2c

k3 (1− fb) −k4 + 2k4fb − k3c

)
.

(41)
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We shall evaluate the Jacobi matrix at the four equilibrium points and determine
the type of the equilibria by the signs of the eigenvalues of the matrix.

1. Equilibrium point E1 = (0, 1).
Let us first note that the point E1 exists only for C ≥ 1, see Proposition
3. Substituting the latter equilibrium point in (41), we derive:

J(E1) =

(
k2 (C − S − 1) −k4

0 k4

)
.

The eigenvalues of J(E1) are λ1 = k2(C − S − 1) and λ2 = k4. Then,
obviously, E1 is a saddle point if C < S + 1 holds and an unstable node if
C > S + 1 is valid.

2. Equilibrium point E2 = (C − S − 1, 1).
We substitute E2 in (41) and obtain

J(E2) =

(
−k2 (C − S − 1) (C − S − 1) (k3 − k2)− k4

0 k4 − k3 (C − S − 1)

)
.

The eigenvalues of the triangular matrix are λ1 = −k2(C−S−1) < 0 (from
the existence condition) and λ2 = k4−k3(C−S−1). Thus, the equilibrium

point is a stable node when k4 < k3(C −S− 1) ⇐⇒ C >
k4

k3
+S + 1 and

is a saddle point when S + 1 < C <
k4

k3
+ S + 1.

3. Equilibrium point E3 = (0, 0). We compute the determinant and trace of
the Jacobi matrix:

J(E3) =

(
−k3 + k2 (C − S) k4

k3 −k4

)
and obtain

detJ(E3) = −k2k4 (C − S) , trJ(E3) = −k3 − k4 + k2(C − S).

The sign of the determinant in this case depends on the factor C − S,
therefore, we shall consider the following two cases:

• C − S > 0.
In this case, the determinant is negative and, therefore, E3 is a saddle
point.

• C − S < 0.
In this case, the determinant is positive and the trace is negative.
The equilibrium is, thus, asymptotically stable.
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4. Equilibrium point E4 =

(
k4(C − S)

k3 + k4
,
k3(C − S)

k3 + k4

)
.

J(E4) =


−k3

(
1−

k3(C − S)

k3 + k4

)
−
k2k4(C − S)

k3 + k4

k3

(
1−

k3(C − S)

k3 + k4

)

k4

(
1−

k3(C − S)

k3 + k4

)
−
k2k4(C − S)

k3 + k4

−k4

(
1−

k3(C − S)

k3 + k4

)
 .

For the eigenvalues, after some computations, we obtain

λ1λ2 = detJ(E4) =
k2k4 (C − S) (k4 − k3(C − S − 1))

k3 + k4
,

λ1 + λ2 = trJ(E4)

=
− k3(k3 + k4 − k3(C − S))− k2k4(C − S)− k4(k3 + k4 − k3(C − S))

k3 + k4

=
k3k4(−1− 1 + C − S) + k2

3(−1 + C − S)− k4(k2(C − S) + k4)

k3 + k4

=
k3k4 (C − S − 2) + k2

3(C − S − 1)− k4 (k2(C − S) + k4)

k3 + k4
.

In order for the equilibrium point to exist, using Proposition 3, we consider the

case when S < C < S+
k3 + k4

k3
. In this case, the determinant is always positive,

therefore, we have to determine the sign of the trace. Further, we shall give an
upper bound for the expression of the trace:

trJ(E4) =
k3k4 (C − S − 2) + k2

3(C − S − 1)− k4 (k2(C − S) + k4)

k3 + k4

=
k3k4(C − S − 1)

k3 + k4
−

k3k4

k3 + k4
+
k2

3(C − S − 1)

k3 + k4
−
k2k4(C − S)

k3 + k4
−

k2
4

k3 + k4

<
k3k

2
4

k3(k3 + k4)
−

k3k4

k3 + k4
+

k2
3k4

k3(k3 + k4)
−
k2k4(C − S)

k3 + k4
−

k2
4

k3 + k4

= −
k2k4(C − S)

k3 + k4
.

The latter expression is always negative for C > S—the case, which we are
interested in. Therefore, the equilibrium is asymptotically stable.
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Numerical experiments

Here, we shall present several phase portraits, illustrating Proposition 4. For
the numerical experiments, we consider the following values for the parameters,
taken from Table 5:

k2 = 5.9, k3 = 65, k4 = 45.

Let us note that the initial conditions for the system (38) must satisfy conditions
(36).

Experiment 1. In this experiment, we shall consider the model parameters
C = 0.8 and S = 0.5. Thus, we consider the case 0 < S < C < 1. By
Proposition 4, in this case E1 = (0, 1) and E2 = (C − S − 1, 1) do not exist,

E3 = (0, 0) is a saddle point, and E4 =

(
k4 (C − S)

k3 + k4
,
k3 (C − S)

k3 + k4

)
is a stable

equilibrium. The following is confirmed by the numerical results, depicted in
Fig 27.

Experiment 2. We consider the case 0 < C < 1 < S, thus, we choose the
model parameters C = 0.8 and S = 4. By Proposition 4, E1 = (0, 1), E2 =

(C−S−1, 1), E4 =

(
k4 (C − S)

k3 + k4
,
k3 (C − S)

k3 + k4

)
do not exist, while E3 = (0, 0) is

a stable equilibrium. The obtained results, shown in Fig. 28, confirm the latter.

Experiment 3. We shall consider model parameters C = 4, S = 6, thus, the
case 1 < C < S holds. Following the statement of Proposition 4, equilibrium

points E2 = (C − S − 1, 1) and E4 =

(
k4 (C − S)

k3 + k4
,
k3 (C − S)

k3 + k4

)
do not exist,

while E1 = (0, 1) is a saddle point, and E3 = (0, 0) is an asymptotically sta-
ble equilibrium point. The numerical results, which confirm the statement of
Proposition 4, are shown in Fig. 29.

Experiment 4. In the following experiment, we consider the conditions S <
C < S + 1 and choose the model parameters C = 5.2 and S = 5. Taking
into account Proposition 4, in this case, E1 and E3 are saddle points, E2 does
not exist and E4 is a stable equilibrium. The numerical results, confirm the
statement of the latter proposition, see Fig. 30.

Experiment 5. For Experiment 5, we consider the case S+1 < C < S+
k3 + k4

k3
and choose model parameters C = 5.2 and S = 4. Using Proposition 4, E1 =
(0, 1) is an unstable equilibrium, E2 = (C −S− 1, 1) and E3 = (0, 0) are saddle

points, while E4 =

(
k4 (C − S)

k3 + k4
,
k3 (C − S)

k3 + k4

)
is asymptotically stable. The

numerical results in Fig. 31 are in agreement with the analytic results.

Biomath Communications 9 (2022), 2212129, 10.55630/bmc.2022.12.129 44/76

https://doi.org/10.55630/bmc.2022.12.129


E4

E3

0.2 0.4 0.6 0.8
c

0.2

0.4

0.6

0.8
fb

Figure 27: Phase portrait for the case k1 = 0 with parameters C = 0.8, S = 0.5. E1

and E2 do not exist, while E3 is a saddle and E4 is a stable equilibrium.
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Figure 28: Phase portrait for the case k1 = 0 with parameters C = 0.8, S = 4. In this
case, E1, E2, and E4 do not exist, while E3 is a stable equilibrium.
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Figure 29: Phase portrait for the case k1 = 0 with parameters C = 4, S = 6. In this
case, E2 and E4 do not exist, while E1 is a saddle and E3 is an asymptotically stable
equilibrium. Note: The green trajectory will be discussed further in the next section.
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Figure 30: Phase portrait for the case k1 = 0 with parameters C = 5.2, S = 5. In this
case E1 and E3 are saddle points, E2 does not exist, and E4 is a stable equilibrium.
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Figure 31: Phase portrait for the case k1 = 0 with parameters C = 5.2, S = 4. In
this case, E1 is an unstable equilibrium, E2 and E3 are saddle points, and E4 is an
asymptotically stable equilibrium.
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Figure 32: Phase portrait for the case k1 = 0 with parameters C = 7, S = 4. In this
case, E1 is an unstable equilibrium, E2 is a stable equilibrium, E3 is a saddle point,
and E4 does not exist.
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Experiment 6. Here, we shall consider the case C > S +
k3 + k4

k3
and choose

model parameters C = 7, S = 4. By Proposition 4, E1 is an unstable equilib-
rium, E2 is asymptotically stable, E3 is a saddle point and E4 does not exist.
The numerical results in Fig. 32 are in agreement with the analytic results.

3.2.3 Biological implications of the qualitative analysis

Based on the qualitative analysis of the model for the calcium dynamics in
a muscle cell, we make the following observations:

• Case k1 > 0, k2 = 0.

Let us first discuss the case when there is a stimulus, i.e., when k2 = 0.
For each choice of the parameters, depending on the ratio C between the
total concentrations of calcium ions and CF sites, the biological system
tends to a certain equilibrium.

◦ Following Proposition 2, when C < 1 holds, i.e., when the total
concentration of CF sites is more than the total concentration of
calcium (or, stated otherwise, there is not enough calcium to fill the
CF sites), the system always reaches the equilibrium point

E2 =

(
Ck4

k3 + k4
,
Ck3

k3 + k4

)
.

◦ However, even in the case when there are sufficient calcium ions,

depending on the ratio
k4

k3
between the rates of binding and release

from the CF sites, the system might also stabilize at this point. This

is the case, when C < 1 +
k4

k3
, or equivalently

k4

k3
> C − 1, thus, the

rate of binding of calcium ions to the CF is relatively small, compared
to the rate of release;

◦ Vice versa, if
k4

k3
< C−1, then calcium ions eventually bind to all CF

sites, which corresponds to the stable equilibrium E1 = (C − 1, 1),
where fb = 1.

Let us further note that the equilibrium state of the system does not de-
pend on the rate of release from the SR sites k1. Therefore, the asymptotic
behaviour of the system does not depend on the strength of the incoming
signal. However, it determines the rate at which the biological system
tends to the equilibrium point. For the sake of example, numerical results
for the concentration of free calcium ions, obtained for two different values
of k1, are shown in Fig. 33.
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Figure 33: Concentration of free calcium ions c in time. Results for k1 = 1 are depicted
in red, for k1 = 9.6—in blue.

• Case k1 = 0, k2 > 0.

Here, we shall discuss from a biological point of view the qualitative results
for the case, when there is no stimulus present in the muscle cell, i.e., when
k1 = 0.

◦ Following Proposition 4, if 0 < C < S holds true, which biologically
means that the total concentration of calcium ions is less than the
total concentration of SR sites, then the system reaches the equilib-
rium state c = 0, fb = 0. The latter means that all calcium ions get
bound to the SR, thus, the muscle cell is relaxed. Let us emphasize
that the case 0 < C < S is the natural one for the process, since the
free calcium ions were originally released from the SR.

◦ If, however, the total concentration C is higher than S, then different
equilibrium points are reached.

We have discussed in this section the two limiting cases when k1 and k2 are
held constant, one of them 0. Of course, in reality the process is characterized
with consecutive changes in their values. Therefore, the results, presented here,
will give us information for the two separate parts of the process—when the
stimulus is on and off.

3.3 Numerical experiments

In this section, we shall present only one numerical result to illustrate the
process of calcium dynamics, described by model equations (35). More numer-
ical results will be given in the next section, where we shall couple the models
for the processes of nerve impulse propagation and calcium dynamics. Here, for
model parameters we shall use values from [30], systematized in Table 5.
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Parameter Value Parameter Value
C 2 µs 600 mN/mm
S 6 ls0 0.234 mm
k10 9.6 s−1 lc0 2.6 mm
k20 5.9 s−1 a −2.23 mm−2

k3 65 s−1 αmax 1.8
k4 45 s−1 αm 0.4 s/mm
L 2.7 mm αp 1.33 s/mm
P0 60.86 mN/mm2

Table 5: Model parameters for (35), taken from [30].
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Figure 34: Graphs of coefficients k1 and k2.
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Figure 35: Modelling of calcium dynamics—concentration of free calcium ions (in
black), concentration of filament-bound calcium sites (in blue).
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Further, we define a square wave stimulus by introducing the piecewise con-
stant functions k1 and k2 in the following way:

k1 =

{
k10, stimulus is on,

0, stimulus is off,
k2 =

{
0, stimulus is on,

k20, stimulus is off.

For our numerical experiment, we consider the particular choice of k1 and k2,
depicted in Fig. 34.

We solve the system of ODEs in the time domain t ∈ [0, 3.5], by using the
fourth order Runge–Kutta method with the following Butcher table [31]:

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

The time-discretization step for the numerical experiments is chosen to be ∆t =
10−3. The numerical solutions for the concentrations c and fb are shown in Fig.
35.

To explain the numerical results, let us consider the two distinct situations
in the process—when the stimulus is on and off.

• Presence of stimulus

Let us first note that in the case, when k2 = 0, this choice of parameters
corresponds to the case of an asymptotically stable point E1 = (C − 1, 1)
in Proposition 2. Thus, for C = 2 and S = 6, the solution would “try
to reach” the corresponding equilibrium point E1 = (1, 1). The latter is
clearly seen from the numerical experiments in Fig. 35.

• Absence of stimulus

In the case, when the stimulus is off, or equivalently, when k1 = 0, by the
qualitative analysis, summarized in Proposition 4, there exist the saddle
equilibrium point E1 = (0, 1) and the asymptotically stable E3 = (0, 0).
The latter explains the peculiar behaviour of the solution for c, that is
observed, e.g., around t = 1. In particular, let us consider the green tra-
jectory in Fig. 29, which is obtained for an initial condition corresponding
to the peak of the graphs in Fig. 4. When close to the saddle point, the
trajectory is repelled with a change in the sign of the derivative for the
concentration c, which results in rise of the solution for c, followed by a
decrease to the equilibrium c = 0.
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3.4 Conclusion and discussion

In this section, we have considered a mathematical model, described in terms
of ordinary differential equations, for the process of calcium dynamics inside the
muscle cell. We have obtained results for the qualitative behaviour of the model
solutions in the two limiting cases k1 = 0 and k2 = 0 that to the best of our
knowledge are not known in the scientific literature. On one hand, such kind
of qualitative information is useful in the mathematical modelling of biologi-
cal processes and it helps to better understand the dynamical properties of the
mathematical model. On the other hand, it gives valuable information about
the influence of the different model parameters. The latter is particularly in-
teresting, when considering the process in different conditions, e.g., when there
are certain diseases present, which affect the normal calcium activity inside the
muscle cell.

We have shown that in each case there exists a single (locally) asymptoti-
cally stable equilibrium point of the dynamical system. However, the numerical
experiments suggest that the corresponding point is also a global attractor for
the model solution. It is interesting from a mathematical point of view to es-
tablish this result rigorously, which is a question that we shall consider in our
further studies on the subject.

Further, it is worth noticing that the model captures only the most significant
aspects of the calcium dynamics, related to the calcium release from the SR and
its binding to the CFs. However, the whole process of muscle contraction has
more details, as discussed in Section 1.2. These could also be considered, in
order to construct a more detailed model of the process. In particular, the ATF
dynamics is also interesting, e.g., for the process of muscle fatigue.

Also, reaction-diffusion type models could be considered (see, e.g., [32]).

4 Mathematical modelling of neurotransmitter transport
in the neuromuscular junction. Integration of the pro-
cesses.

As discussed in the biological preliminaries in the Introduction, see Section
1.2, once the nerve impulse reaches the axon terminals, neurotransmitters are
diffused through the neuromuscular junction to bind to receptors on the muscle
cell, thus, causing complex processes in it, resulting in contraction. In the
previous sections, we considered two separate models for the processes of nerve
impulse transmission and calcium dynamics in the muscle cell, respectively. In
the present section, we shall propose two approaches for connecting the model
(26), (28) with (35) in one integrated multiphysics model.

As discussed in the previous section, the presence of a signal in the muscle
cell is modelled by the coefficients k1, k2 in (35). We shall couple the models
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of neural impulse propagation and calcium dynamics by relating k1

to the result from a numerical simulation of a nerve impulse.

4.1 A simple relation

The first approach we consider in order to get some basic intuition how to
connect the models is a rather simplistic one. A direct connection between the
nerve impulse and the resulting calcium dynamics is postulated. Let us consider
again (35) with the assumptions, proposed by Williams in [29]. In particular,
for the coefficients k1 and k2, these are:

• when the stimulus is on, k1 > 0 and k2 = 0;

• when the stimulus is off, k1 = 0 and k2 > 0.

We shall assume that k1 is proportional to the voltage at the end of
the axon, i.e., at the right boundary of the computational domain.

Let us consider again the numerical results in Section 2.3.2 for a myelinated
axon. We shall give two examples—for the single and the periodic stimuli,
computed in Experiments 1 and 2, respectively, and depicted in Fig. 36.

The graphs of the corresponding coefficient k1 that we choose for illustrative
purposes are shown in Fig. 37. Let us note that when the voltage is negative,
k1 is set to 0.

Having defined k1, we proceed in the same way as in the previous section
to simulate the calcium dynamics, by solving (35) numerically. Results are
depicted in Fig. 38.

The latter results are qualitatively similar to the corresponding ones in Sec-
tion 3. Here, we shall not go into a greater detail. In this section, we only
give a brief idea of our approach for connecting the processes of nerve impulse
propagation and calcium dynamics in the muscle cell. In the next section, we
shall discuss the biochemical processes that underlie this connection and shall
give additional experiments.
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Figure 36: Graphs of the voltage at the right boundary of an axon.
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Figure 37: Graphs of the coefficient k1, which is chosen proportional to the voltage in
Fig. 36, for a single and periodic impulse, respectively.
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Figure 38: Numerical solutions for c and fb, corresponding to k1 in Fig. 37.
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4.2 A reaction–diffusion model of acetylcholine transport in the neu-
romuscular junction

Now, instead of assuming a simple proportionality between the nerve im-
pulse and the coefficient k1 in the model of the calcium dynamics, we shall
consider a more detailed description of the chemical processes in the neuromus-
cular junction that result from the neurotransmitter release. As can be seen
from Fig. 39, the neuromuscular junction consists of a pre-synaptic membrane
(part of the neuron), a post-synaptic membrane (part of the muscle cell), and
a synaptic cleft between them.

When an action potential reaches the end of the axon, a neurotransmitter
called acetylcholine (ACh) is released in the synaptic cleft. It diffuses to the
post-synaptic membrane, where it binds to special receptors (R). In the process,
the ACh reacts with the enzyme acetylcholinesterase (AChE), which catalyzes
the breakdown of ACh into choline and acetate. Further, on the post-synaptic
membrane, when doubly bound with ACh, the receptors open, allowing for
the impulse to “go into” the muscle cell. The process can be described by
the following reaction schemes (see, e.g., [33], [34], and [35] and the references
therein):

ACh+R
2kr−�====�−
k−r

R1, ACh+R1
kr−�=====�−

2k−r

R2, R2
ko−�===�−
kc

Ro, (42)

where R and R1 denote the free and single-bound receptors, R2 denotes the
double bound closed ACh receptors, and Ro denotes the open ACh receptors.

The reaction of ACh with AChE can be described by the following reaction
scheme:

ACh+AChE
k1−�====�−
k−1

X1
k2−−−−→ X2 + Ch, X2

k3−−−−→ AChE + acetate,

(43)
where X1 and X2 denote AChE complexed with ACh and acetyl group, respec-
tively. Choline (Ch) and acetate are end products of the reactions and will not
be considered further in the models.

4.2.1 Mathematical formulation

For the model, we assume that the synaptic gap has a cylindrical shape, as
shown in Fig. 40. Moreover, we assume that the process is characterized by
axial symmetry and in each cross section, the concentrations vary little, thus,
we consider a 1D model, where the spatial variable z is defined on the right in
Fig. 40.

Let us denote the following:

• a—concentration of ACh;
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Figure 39: The neuromuscular junction [34].

Figure 40: A 3D representation of the neuromuscular junction with its corresponding
cylindrical coordinate system [34].
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• r1, r2, ro—concentrations of single-bound, double-bound, and opened re-
ceptors, respectively;

• x1, x2—concentrations of AChE complexes.

By the assumptions we made for the process as well as (42), (43), we consider
the following model [35]:

∂a

∂t
= D

∂2a

∂z2
+ Fe(a, x1, x2) + (Fr1(a, ro, r1, r2) + Fr2(a, r1, r2)) δ(z − L),

∂x1

∂t
= −Fe(a, x1, x2)− k2x1,

∂x2

∂t
= k2x1 − k3x2,

dr1

dt
= Fr2(a

∣∣
z=L

, r1, r2)− Fr1(a
∣∣
z=L

, ro, r1, r2),

dr2

dt
= −Fr2(a

∣∣
z=L

, r1, r2)− Fro(ro, r2),

dro
dt

= Fro(ro, r2),

(44)

where

Fe(a, x1, x2) = −k1a (ET − x1 − x2) + k−1x1,

Fr1(a, ro, r1, r2) = −2kra (RT − r1 − r2 − ro) + k−rr1,

Fr2(a, r1, r2) = −krar1 + 2k−rr2,

Fro(ro, r2) = kor2 − kcro,

(45)

and the function δ is defined as

δ(x) :=

{
1, x = 0,

0, x 6= 0.

For the parameters, we have used the following notation: D is the diffusion
coefficient, RT and ET are the total concentrations of receptors and AChE,
correspondingly, and ks are the rate constants in the reaction schemes (42) and
(43). The concentrations r1, r2, and ro are considered only at the boundary
z = L, thus, they do not depend on the space variable z and the function
δ multiplies the corresponding terms in the first equation. The system (44)–
(45) is closed with initial conditions for all state variables and two Neumann
boundary conditions for a:

∂a

∂z
(0, t) = −aleft(t),

∂a

∂z
(L, t) = 0. (46)
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4.2.2 Numerical scheme

We construct a finite difference approximation of the model (44). Let us
discretize the spatial domain z ∈ [0, L] by introducing a uniform mesh with a
discretization step ∆z and let zi := i∆z, i = 0, n. Analogously, we discretize the
time domain t ∈ [0, T ] with a time discretization step ∆t and denote tj = j∆t,
j = 0,m. Further, we denote the approximate solutions for a, x1, x2 at the
point (zi, tj) with Aji , X

j
1,i, and Xj

2,i, and the approximate solutions for r1, r2,

and ro at the point tj with Rj1, Rj2, and Rjo, respectively.
To this end, because of the stiffness of the system that could be observed,

if one tries using classical explicit schemes, we derive a Crank–Nicolson type
scheme for the first equation and semi-implicit approximations for the rest.

Approximation of the main equations

• Approximation of the first equation.

For i = 1, n− 1, j = 0,m− 1, we make the following approximation of the
first equation in (44):

Aj+1
i −Aji

∆t
=
D

2

(
Aj+1
i+1 − 2Aj+1

i +Aj+1
i−1

∆z2
+
Aji+1 − 2Aji +Aji−1

∆z2

)

+
1

2

(
−k1A

j+1
i

(
ET −Xj+1

1,i −X
j+1
2,i

)
+ k−1X

j+1
1,i

)
+

1

2

(
−k1A

j
i

(
ET −Xj

1,i −X
j
2,i

)
+ k−1X

j
1,i

)
.

(47)

• Approximation of the PDEs for the AChE complexes.

We consider the second and third equations in (44) together. We use a
semi-implicit scheme for their approximation. Basically, this is a backward
Euler method, but we have approximated a on the j-th time layer in order
to avoid the need of solving non-linear algebraic systems:

Xj+1
1,i −X

j
1,i

∆t
= k1A

j
i

(
ET −Xj+1

1,i −X
j+1
2,i

)
− k−1X

j+1
1,i − k2X

j+1
1,i ,

Xj+1
2,i −X

j
2,i

∆t
= k2X

j+1
1,i − k3X

j+1
2,i .

(48)

Let us further note that (48) with i = 0, n represents n + 1 uncoupled
systems that need to be solved for each time layer j = 0,m− 1.

• Approximation of the ODEs for the ACh receptors.
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We construct a semi-implicit numerical approximation for the last three
equations in (44) in a similar fashion and obtain

Rj+1
1 −Rj1

∆t
= 2krA

j
n

(
RT −Rj+1

1 −Rj+1
2 −Rj+1

0

)
− k−rRj+1

1 − krAjnR
j+1
1 + 2k−rR

j+1
2 ,

Rj+1
2 −Rj2

∆t
= krA

j
nR

j+1
1 − 2k−rR

j+1
2 − koRj+1

2 + kcR
j+1
o ,

Rj+1
o −Rjo

∆t
= koR

j+1
2 − kcRj+1

o , j = 0,m− 1.

(49)

Approximation of the boundary conditions

• Left boundary condition

We start with the following approximation, which is constructed in accor-
dance with the way we approximated the main equation (i.e., a Crank–
Nicolson scheme):

1

2∆z

(
Aj+1

1 −Aj+1
0 +Aj1 −A

j
0

)
= −aleft(tj + ∆t/2)

Then, similarly to the previous section, by assuming that the main equa-
tion is fulfilled on the left boundary with sufficient accuracy, after straight-
forward, but rather tedious computations that we omit, we increase the
order of approximation and derive(
− 1

2∆z
− ∆z

2∆tD
− k1∆z

4D

(
ET −Xj+1

1,0 −X
j+1
2,0

))
Aj+1

0 +
1

2∆z
Aj+1

1

= −aleft(tj + ∆t/2)− Aj1 −A
j
0

2∆z
− ∆z

2∆tD
Aj0 −

∆zk−1

4D
Xj+1

1,0

− ∆z

4D

(
−k1A

j
0

(
ET −Xj

1,0 −X
j
2,0

)
+ k−1X

j
1,0

)
. (50)

• Right boundary condition

We approximate the right boundary condition as follows:

1

2∆z

(
Aj+1
n −Aj+1

n−1 +Ajn −A
j
n−1

)
= 0.

Analogously, we improve the order of approximation and finally obtain

αAj+1
n−1 + βAj+1

n = γ, (51)
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where

α = − 1

2∆z
,

β =

{
1

2∆z
+

∆z

2∆tD
+

∆z

4D
k1

(
ET −Xj+1

1,n −X
j+1
2,n

)
+

2kr∆z

4D

(
RT −Rj+1

1 −Rj+1
2 −Rj+1

o

)
+

∆z

4D
krR

j+1
1

}
,

γ = − 1

2∆z

(
Ajn −A

j
n−1

)
+

∆z

2∆tD
Ajn +

∆z

4D

{
− k1A

j
n

(
ET −Xj

1,n −X
j
2,n

)
+ k−1X

j
1,n + Fr1(Ajn, R

j
o, R

j
1, R

j
2) + Fr2(Ajn, R

j
1, R

j
2)

+ k−1X
j+1
1,n + k−rR

j+1
1 + 2k−rR

j+1
2

}
.

Algorithm

The approximations, derived above, can be combined to form the following
numerical scheme. After we begin with zero initial conditions at the time layer
j = 0, we follow the next steps. At each time layer j = 0,m− 1:

1. We solve the system (49) and find Rj+1
1 , Rj+1

2 , Rj+1
o ;

2. For each i = 0, n, we solve the system (48) and obtain Xj+1
1,i , Xj+1

2,i ;

3. We substitute the results from steps 1 and 2 into (47), (50), (51) and solve
the resulting system for Aj+1

i , i = 0, n.

4.2.3 Numerical experiments

We are now ready to couple all processes, considered so far, in one
multiphysics simulation. We shall proceed as follows:

1. Simulate a nerve impulse (as an example, we use the results from
Section 2.3.2);

2. Using the results for the voltage at the right boundary of the
computational domain, we compute aleft and simulate the neu-
rotransmitter transport by implementing (4.6)–(4.10). Note:
when the voltage is negative, aleft = 0;

3. We use the results for Ro from 2 and solve (3.6) with k1, pro-
portional to Ro, to simulate the calcium dynamics.
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Parameter Value Parameter Value

kr 30 mM−1ms−1 k2 110 ms−1

k−r 10 ms−1 k3 20 ms−1

ko 20 ms−1 RT 2 mM
kc 5 ms−1 ET 74 µM
k1 200 mM−1ms−1 D 2× 10−6 cm2s−1

k−1 1 ms−1 L 50 nm

Table 6: Model parameters for (44), taken from [35].
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Figure 41: Graph of aleft for a single impulse in a myelinated axon.

For our numerical experiments, we consider the parameters in Table 6. The
discretization steps for all experiments are chosen to be ∆z = 0.5 and ∆t =
0.001.

Let us note that our main goal of those experiments is to obtain some qual-
itative results in order to illustrate the main approach. The coefficients of
proportionality that we use to couple the models in steps 1–3, certainly, need
to be estimated in future studies on the basis of experimental data.

Experiment 1 (Single stimulus input).
For our numerical experiments, we shall follow steps 1, 2, 3 to obtain a multi-
physics simulation in the case of a single neural stimulus.

1. We consider the voltage at the right boundary for a myelinated axon,
obtained in Section 2.3.2, presented in Fig. 36(a).

2. We choose aleft to be proportional to the voltage in 1. The graph of the
thus defined aleft is shown in Fig. 41.

The numerical results for a and Ro are depicted in Fig. 42 and Fig. 43,
respectively. As evident from the latter, when a nerve impulse is received,
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the concentration a rises at the left boundary and starts diffusing through
the synaptic cleft. After the axon gets repolarized, the ACh decreases,
because it is broken down by the AChE. For our further study, we shall be
interested in Ro, in particular. The concentration of the opened receptors
will be used to determine the input k1 in the muscle cell that triggers the
calcium dynamics.

3. Last, we choose k1 for the model (35) to be proportional to the values of
Ro, depicted in Fig. 43. The numerical results for the concentrations c
and fb from solving (35) are shown in Fig. 44.

Experiment 2 (Periodic stimulus input). 1. We consider the voltage at the
right boundary for a myelinated axon, obtained in Section 2.3.2 presented
in Fig. 36(b).

2. We choose aleft to be proportional to the voltage in 1. The graph of the
thus defined aleft is shown in Fig. 45.

Because we are interested in coupling the process of nerve impulse prop-
agation and calcium dynamics by using the obtained results for Ro, we
shall only visualize its concentration, see Fig. 46.

3. We set k1 for the model (35) to be proportional to the concentration Ro,
obtained in 2. The corresponding numerical results are shown in Fig. 47

The numerical results, obtained in this section, are qualitatively similar
to the ones in 3.3. Their advantage, however, is that they are based on a
detailed description of the underlying processes.

4.3 Conclusion and discussion

In this section, we have implemented the goal of constructing an example
integrated model for the process of muscle activation. We have coupled the
processes of nerve impulse propagation, neurotransmitter release and calcium
dynamics in the muscle cell. The qualitative behavior of the numerical solutions
seems plausible from a biological point of view. In our numerical experiments,
we have succeeded in restoring the sequence of events that lead to a muscle
contraction—when a nerve impulse is transmitted to the neuromuscular junc-
tion, the neurotransmitter acetylcholine is released and diffused to the motor
end plate; there, the receptor channels open and lead to calcium dynamics inside
the cell.

Let us again note that at this point the obtained results are of qualitative
nature. In future work, the parameters that are used for coupling the models
should be experimentally identified. Furthermore, the muscle activation is trig-
gered by a whole population of neural cells (cf. [36] and the references therein).
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Figure 42: Experiment 1: Time evolution of the ACh concentration.
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Figure 43: Experiment 1: Time evolution of the concentration Ro of open receptors
in the muscle cell membrane.
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Figure 44: Experiment 2: Graph of the coefficient k1, which is chosen proportional to
the concentration Ro.
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Figure 45: Experiment 2: Graph of aleft for a periodic impulse in a myelinated axon.

10 20 30 40 50
t

0.5

1.0

1.5

Ro

Figure 46: Experiment 2: Time evolution of the concentration Ro of open receptors
in the muscle cell membrane.
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Figure 47: Graph of the concentrations c and fb, modelled with (35).

Thus, two possible approaches could be undertaken in the future. One can make
detailed simulations based on the Hodgkin–Huxley model for a single neuron
to compute the effective characteristics for the neural transmission. The other
possible approach is to make simulations for some artificial population of neu-
ral cells, connected to a muscle cell. In our future work, we plan to study the
viability of both approaches.

Another point we should make is that we neglected the radial diffusion in
the model of neurotransmitter transport. However, it might be important for
the process [35]. Therefore, 2D (axially-symmetric) and 3D models should be
considered in our future work.

5 Mathematical modelling of muscle activation

5.1 Mathematical modelling of muscle contraction

In 1938, A. Hill [37] presented the first widely known model of a skeletal
muscle. According to Hill, a muscle can be modelled as a contractile element
(CE) connected in series with a linearly elastic spring element or series element

Biomath Communications 9 (2022), 2212129, 10.55630/bmc.2022.12.129 64/76

https://doi.org/10.55630/bmc.2022.12.129


(SE) [38], see Fig. 48. The CE generates force due to a signal, resulting from
the release of Ca2+ ions from the SR, while the elastic spring element has a
passive role, which accounts for the tendons. We assume that the total length

Figure 48: Hill’s 1938 model of a muscle [37].

of the muscle L is equal to the sum of the length of the elastic spring element
ls and the length of the contractile element lc, i.e.,

L(t) = lc(t) + ls(t). (52)

To describe the force in the spring element, we shall use Hooke’s law of springs,
which states that

Ps(t) = µs(ls(t)− ls,0),

where Ps is the force exerted by the spring element, µs is the stiffness coefficient,
and ls,0 is the resting length of the elasting spring element. We express ls from
the above equation and obtain

ls(t) = ls,0 + Ps(t)/µs.

Substituting the latter in eq. (52), we derive

lc(t) = L(t)− ls,0 − Ps(t)/µs. (53)

We differentiate (53) and derive the following equation for the velocity of the
CE:

vc(t) = V (t)− 1

µs

dPs
dt

, (54)

where vc and V are the CE and muscle velocities, respectively. For simplicity, we
assume an isometric contraction, in which tension is generated without changing
the length of the muscle L, i.e., V (t) ≡ 0.
The force generation of CE, Pc, depends on the velocity vc of the element and
its length lc, see [30], thus, as the contraction of the filaments depends on
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the binding of Ca2+ ions to the CF, Pc is also dependent on the amount of
the calcium-bound CF sites, fb. The latter observations are included in the
following possible model:

Pc = P0λ(lc)g(vc)fb, (55)

where P0 is the force, exerted in an isometric tetanic contraction at the resting
length lc,0 and g(vc), λ(lc) are used to express the dependence of Pc on the length
lc and the velocity vc. The latter functions λ(lc) and g(vc) are estimated from
the measurements in Williams, et.al. [29], where experiments were performed
on a lamprey muscle. Positive velocity vc is assumed to refer to lengthening of
the CE, while a negative one means shortening. Further, g(vc) is assumed to be
a piecewise linear function:

g(vc) = 1 +

{
αpvc, vc ≥ 0,

αmvc, vc < 0,
(56)

where αp > αm > 0, because of the ability of muscle fibers to exert greater
forces during lengthening than shortening [29] and 0 ≤ g(vc) ≤ αmax.
The equation that defines λ(lc), according to Williams [29], is given by

λ(lc) = 1 + a(lc − lc,0)2. (57)

The above function has a minimum, equal to 1, at the equilibrium length.
Since the CE and SE are connected in series, Pc and Ps should be equal

in a steady state. If we set Pc = Ps, then we can reduce (54) and (55) to one
expression for vc, dependent on the derivatives of the functions in (56) and (57).
The piecewise function g, however, is not differentiable at vc = 0, which will
result in singularity in the obtained equation [9]. Furthermore, the stretch of
the SE in reality is not instantaneous [30]. Therefore, this approach is not used,
but a simple linear kinetics is considered:

dPs
dt

= k5 (Pc − Ps) ,

where k5 is chosen large enough so that Ps and Pc are nearly identical.
We substitute (55) in the latter equation:

dPs
dt

= k5 (P0λ(lc)(1 + αvc)fb − Ps) , α =

{
αp, vc ≥ 0,

αm, vc < 0.

Then, using (54), we obtain:

dPs
dt

= k5

(
P0λ(lc)

(
1 + α

(
V (t)− 1

µs

dPS
dt

))
fb − Ps

)
, α =

{
αp, vc ≥ 0,

αm, vc < 0.
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Rearranging the terms, we derive the following equation for Ps:

dPs
dt

= k5µs
P0λ(lc)fb (1 + αV (t))− Ps

µs + k5P0λ(lc)αfb
, α =

{
αp, vc ≥ 0,

αm, vc < 0.
(58)

5.2 Numerical experiments

In this section, we show how one can use Hill’s model to simulate nerve
force generation by using fb from (35) as an input to (58). For our numerical
experiments, we consider the parameters given in Table 5. We substitute the
assumption of V (t) = 0 in (58) and derive

dPs
dt

= k5µs
P0λ(lc)fb − Ps

µs + k5P0λ(lc)αfb
. (59)

We further express lc from (53) and substitute in (57), thus, consider the func-
tion λ as a function of the spring force Ps, λ(Ps):

λ(Ps) = 1 + a

(
L− ls0 −

Ps
µs
− lc,0

)2

. (60)

Substituting the latter in (59), we derive

dPs
dt

= k5µs
P0λ(Ps)fb − Ps

µs + k5P0λ(Ps)αfb
. (61)

We discretize the time domain t ∈ [0, T ], by introducing a uniform mesh

ω∆t := {ti = i∆t, i = 0, n, n = T/∆t}

and denote P̄s,i and v̄c,i to be the values of the approximate solution at ti.
We further approximate the time derivative in (61), using forward difference
formula. In order to estimate vc (which is used to obtain α), we use use back-
ward difference formula. Thus, we make the computations, using the following
numerical scheme:

P̄s,i+1 − P̄s,i
∆t

= k5µs
P0λ(P̄s,i)fb,i − P̄s,i
µs + k5P0λ(P̄s,i)αfb,i

, i = 0, n− 1,

v̄c,i =
P̄s,i−1 − P̄s,i

∆tµs
, i = 1, n,

P̄s,0 = 0, v̄c,0 = 0.

The numerical results, corresponding to ∆t = 0.001, are presented in Fig. 49,
where the values of fb,i are taken from the computations in Section 3.3.

The results in Fig. 35 and Fig. 49 show that when k1 is positive, i.e., when
the stimulus is on, the concentration of free calcium ions and calcium-bound
CF sites increases as well as the generated force. On the other hand, when k1

is zero and k2 > 0 (i.e., the stimulus is off), the three quantities decrease.
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Figure 49: Resulting muscle force, simulated with Hill’s model [37].

5.3 Conclusion and discussion

As we can see, it is straightforward to compute the resulting muscle force,
using Hill’s model, if we have simulated the calcium dynamics inside the muscle
cells. We have shown only an experiment, corresponding to the results in Section
3. Numerical simulations for the integrated approach presented in the previous
section can be obtained in the same way.

In the literature, there exist other models for the muscle force generation.
Another classical one, besides Hill’s model, is Huxley’s model, see [39]. Such
models could also be considered in our future work.

6 Conclusion

The neuromuscular system combines the nervous system and muscles to-
gether to control and permit movement of the body. The process of muscle
activation can be described by four consecutive subprocesses—nerve impulse
propagation, neurotransmitter release in the neuromuscular junction, calcium
dynamics in the muscle cell, and muscle force generation. A disorder in one of
the latter processes is known as a neuromuscular disease. Thus, the neuromus-
cular diseases could be divided in the following groups [40]:

• motor neuron diseases;

• neuromuscular junction disorders;

• muscle diseases.

Studying each of the latter necessitates an in-depth study of the underlying
mechanisms of neuromuscular activation and the effect of the specific disorder
to the whole process.

Biomath Communications 9 (2022), 2212129, 10.55630/bmc.2022.12.129 68/76

https://doi.org/10.55630/bmc.2022.12.129


In this thesis, we have described in details the process of muscle activation
and have derived a mathematical model for each of the related subprocesses.
Further, we have proposed a framework, which couples the latter models. The
results from studying these models and possible directions for future studies were
summarized in each individual section and we shall not repeat the conclusions
here.

Let us note, however, the following. The aim of the framework is to allow
separate modelling of the processes as well as obtaining an integrated simulation
for the muscle activity. We plan to use this framework as a cornerstone for
our future studies of neuromuscular diseases. The framework can be adapted
for specific purposes by modifying or substituting the considered mathematical
models as well as adding additional processes. Also, a comparison with other
known in the literature integrated models (see, e.g., [41], [42] and the references
therein) should be made from the point of view of their applicability to studying
neuromuscular diseases.

A Additional information,
concerning the Hodgkin–Huxley model

A.1 Basic physical laws,
used in the derivation of the Hodgkin–Huxley model

A.1.1 Charge conservation law

Let us denote the transmembrane voltage and the electric charge at position
x and time t by V (x, t) and q(x, t), respectively, the total current with j(x, t)
and the longitudinal current with i(x, t). We consider a small interval [ξ, ξ+∆ξ],
see Fig. 50.

The law of conservation of charge states that the change in the amount of
electric charge in a given volume of space is equal to the amount of charge,
flowing into the volume minus the amount of charge, flowing out of the volume.
Therefore, it gives a relation between the amount of charge and the charge flux
in a specific volume. We can write it in mathematical terms as follows:

d

dt

∫ ξ+∆ξ

ξ

q dx =

∫ ξ+∆ξ

ξ

∂q

∂t
dx = i(ξ, t)− i(ξ + ∆ξ, t). (62)

We substitute with the definition of current, i.e., j =
∂q

∂t
and approximate

the integral on the left-hand side using the midpoint rule [43], to obtain

j

(
ξ +

∆ξ

2
, t

)
∆ξ = i(ξ, t)− i(ξ + ∆ξ, t) +O

(
(∆ξ)3

)
.
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Figure 50: Longitudinal flow of current in the interval [ξ, ξ + ∆ξ].

Then, we divide both sides by ∆ξ and let ∆ξ → 0 to finally derive the differ-
ential form of the conservation law of charge:

j(ξ, t) = − ∂i
∂x

(ξ, t) . (63)

A.1.2 Ohm’s law

Ohm’s law states that the current, passing through a conductor, is propor-
tional to the voltage and inversely proportional to the resistance. If a constant
resistance R is assumed, then the following holds true:

i(x, t) =
V (x, t)

R
. (64)

We shall derive a relation between the charge q and the voltage V . Let us again
consider a small interval [ξ, ξ+∆ξ]. The membrane voltage at point ξ is equal to
the difference in the electric potentials inside and outside the axon. Assuming
that the potential outside the axon is equally distributed, i.e., a constant, we
express the voltage in terms of the inside potential Vin and the outside potential
Vout:

V (ξ, t) = Vin(ξ, t)− Vout,
V (ξ + ∆ξ, t) = Vin(ξ + ∆ξ, t)− Vout.

(65)

Subtracting the two equations in (65), we derive:

V (ξ, t)− V (ξ + ∆ξ, t) = Vin(ξ, t)− Vin(ξ + ∆ξ, t). (66)

The right-hand side is equal to the voltage in the interval [ξ, ξ + ∆ξ]. Taking
the latter into consideration and combining (64) for the longitudinal current i
with (66), we obtain:∫ ξ+∆ξ

ξ

R i(x, t) dx = V (ξ, t)− V (ξ + ∆ξ, t).
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Figure 51: Schematic representation of the voltage clamping technique [44].

We again approximate the integral in the latter equation by using the midpoint
rule and obtain:

R i

(
ξ +

∆ξ

2
, t

)
∆ξ = V (ξ, t)− V (ξ + ∆ξ, t) +O

(
(∆ξ)3

)
.

By taking the limit ∆ξ → 0, we derive:

R i(x, t) = −
∂V

∂x
(x, t). (67)

A.2 The experiments of Hodgkin and Huxley

A.2.1 Space and voltage clamping

To model the current through the membrane of the axon, Hodgkin and
Huxley used the following two techniques to formulate empirical laws for the
transmembrane current [13].

• Space clamping
A squid nerve has a long axon. Because of its length, variations in the
transmembrane voltage are expected, which makes it difficult to measure
the ionic permeability of the membrane. The idea of space clamping is
to eliminate space as an independent variable, i.e., it is held constant in
space. For this technique a conducting longitudinal wire is inserted, which
results in a uniform potential throughout the length of axon surrounding
the wire.

Biomath Communications 9 (2022), 2212129, 10.55630/bmc.2022.12.129 71/76

https://doi.org/10.55630/bmc.2022.12.129


• Voltage clamping
The idea of voltage clamping is to hold the transmembrane voltage at a
fixed value in order to measure other important variables that describe
the propagation of an impulse, such as ionic current, membrane perme-
ability, temperature, etc. This is done by using an electronic device called
negative-feedback amplifier. A schematic representation of the experimen-
tal setup is given in Fig. 51.

A.2.2 Sodium and potassium “turn-on” and “turn-off” variables

To understand in more details the dynamics, described by the Hodgkin–
Huxley model, let us consider the sodium and potassium “turn-on” and “turn-
off” variables m, n, and h, separately. The latter are modeled by (8)–(10).
Considering the model for a fixed V , we obtain the following ODE system:

dm

dt
= −

m−m0(V )

τm(V )
,

dh

dt
= −

h− h0(V )

τh(V )
,

dn

dt
= −

n− n0(V )

τn(V )
.

Example solutions for fixed V = 100 mV are shown in Fig. 52.
As can be seen in Fig. 52, the functions m(t), h(t), n(t) tend to equilibrium

states—those are m0(100), n0(100), h0(100), respectively. In the initial stage of
the process, m changes much faster than h and n do. This is why we can think
of m as describing the opening of the sodium channels—since h is close to 1,
while m reaches its equilibrium, the dynamics of the product m3h is determined
by m, when t is sufficiently small. After that, m gets stabilized, therefore m3h
tends to zero as h does, i.e., h describes the closing of the sodium channels.
Analogously, we can note that the dynamics of the potassium channels is much
slower than the opening of the sodium channels.

B Qualitative analysis

Here, we give some basic notions from the qualitative theory of dynamical
systems that is used in the thesis. Much more detailed exposition of the subject
can be found, e.g., in [45], [46], [47].

We consider an autonomous ODE system

du

dt
= f(u), (68)

where u ∈ Rn and f : Rn → Rn is a sufficiently smooth function.
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Figure 52: Solutions for the sodium and potassium turn-on and turn-off variables
m, h, and n at a fixed voltage of 100 mV.

Definition 1. The set of all possible values of u is called a phase space.

Definition 2. The projection of a solution of the system (68) onto the phase
space is called a trajectory.

Definition 3. We say that the equilibrium point E is Lyapunov stable, if ∀ε >
0, ∃δ = δ(ε) > 0 such that if |u0−E| < δ it follows that |γ(t)−E| < ε for every
t, where γ(t) is the trajectory, corresponding to the initial condition u0 from the
phase space. If in addition γ(t)→ E as t→∞, then E is called asymptotically
stable.

Definition 4. We say that the point E from the phase space is an equilibrium
point of (68), if it is a solution of the system f(u) = 0.

Theorem 1 (Hartman–Grobman). Let E be an equilibrium point for the system
(68). If E is hyperbolic, i.e., if the eigenvalues of the Jacobi matrix J of the
right-hand side, evaluated at the point E, have non-zero real parts, then, in a
sufficiently small neighborhood of the point E, the dynamics of the linearized
system

du

dt
= J(E)(u− E),

is the same as the dynamics of the original system.
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Let us consider (68) for n = 2. From the Hartman–Grobman theorem and
known results for linear autonomous systems, it follows that:

• if λ1 < 0 and λ2 < 0, where λ1 and λ2 are the eigenvalues of the Jacobi
matrix, the equilibrium point E is asymptotically stable;

• if at least one of the eigenvalues is positive, then E is unstable; in partic-
ular, if exactly one of the eigenvalues is negative and the other is positive,
then E is a saddle point.
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