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Abstract

We consider the enzyme kinetic reaction scheme originally pro-
posed by V. Henri of single enzyme-substrate dynamics where two
fractions of the enzyme—free and bound—are involved. Henri’s scheme
involves four concentrations and three rate constants and via the
mass action law it is translated into a system of four ODEs. In two
case studies we demonstrate how the rate constants can be computed
whenever time course experimental data are available. The obtained
results are compared with analogous results implied by the classical
Michaelis-Menten model. Our approach focuses on the uncertainties
in the experimental data, as well as on the use of contemporary com-
putational tools such as CAS Mathematica.
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1 Introduction

We study mathematically and computationally time course experimental
data for the dynamics of fermentation processes related to waste-water
denitrification [2], [19], paying special attention to the measurement er-
rors involved. We describe and motivate our modelling approach applying
the biochemical reaction scheme of the simple enzyme-substrate dynam-
ics where two fractions of the enzyme (free and bound) are involved. Our
approach is also applied to a set of available experimental data for the
dynamics of acetylcholine hydrolysis by acetylcholinesterase [29].

We focus on contemporary computational tools that are available for
dealing directly with time course experimental data, so that there is no
need to make use of approximate models. In particular, we demonstrate
some Mathematica tools allowing for the estimation of the rate parameters
of the ODE system by means of appropriate fitting of the system solutions
to available time course experimental measurement data.

2 Enzyme kinetic basic models

2.1 Henri-Michaelis-Menten reaction scheme

Scientists studying enzymatic processes by the end of the 19th century
have initially tried to explain the dynamics of the substrate uptake during
fermentation by means of the simple chemical catalist reaction scheme:

S + E
k−→P + E, (1)

wherein S is the substrate, E is the enzyme and P is the product. Apply-
ing the mass action law, the above kinetic scheme leads to the following
differential equation for the substrate concentration s = [S]:

ds

dt
= −kes. (2)

Assuming that the concentration e = [E] of the enzyme is (nearly) constant
the above differential equation leads to a solution for the concentration s
of the substrate which is an exponential decay. Such a solution sometimes
deviates from the experimental data e.g. when the enzyme concentration
is much smaller than the substrate one. In such situations the substrate
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s changes almost linearly (with constant rate) for the most part of the
fermentation process, cf. Fig.1. However, in other situations the substrate
experimental curves may be closer to the solution of (2).

Fig 1

Figure 1: Substrate dynamics according to the approximate scheme (1)
and the exact scheme (3). The rate constants of (3) are k1 = 2.62, k−1 =
0.1, k2 = 1.25, initial conditions: s0 = 2.6, e0 = 0.06; the parameters of (1)
can be evaluated to Km = (k−1 + k2)/k1 = 0.51526, Vmax = k2e0 = 0.075

The observed discrepancy between the experimental data and expected
theoretical solution based on the kinetic scheme (1) has lead Victor Henri
[11]–[14], [27] to the following more involved reaction scheme:

S + E
k1−→←−
k−1

SE
k2−→ P + E. (3)

Reaction scheme (3) describes the reaction mechanism between an enzyme
E with a single active site and a substrate S, forming reversibly an enzyme-
substrate complex SE, which then yields irreversibly product P . Henri’s
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reaction scheme (3) says that during the transition of the substrate S into
product P the enzyme E bounds the substrate into a complex SE having
different properties than the free enzyme and thus necessarily considered
as a separate substance.

2.2 Michaelis-Menten equation

Applying the mass action law to Henri’s reaction scheme (3) one obtains
a general dynamical system, which under the so-called quasi-steady-state
assumption [18], [20], [21], [22] leads to the following reaction equation for
the substrate rate ds/dt:

ds

dt
= − Vmaxs

Km + s
. (4)

The quasi-steady-state assumption is applied whenever the ratio [E]/[S] is
small so that the fermentation process has a considerably long time interval
during which the concentration [ES] of the bound enzyme is constant [28].

In their seminal paper Michaelis and Menten discussed in detail Henri’s
reaction scheme and equation (4) which became known as the Michaelis-
Menten equation (MM-equation) [17], see also [15]. In addition Michaelis
and Menten discussed at length the meaning of the rate constants in Henri’s
reaction scheme and proposed a protocol for the practical calculation of the
constant Km in (4). The constant Km is known as Michaelis constant (for
the history of these investigations see [5], [26].

The MM-equation (4) can be written in the form

ds

dt
= − Vmaxs

Km + s
= − Vmax

Km/s+ 1
,

showing that for large values of s the right-hand side is close to the constant
−Vmax; hence the uptake rate is almost constant (zero-order kinetic).

Michaelis-Menten equation (4) is simple, can be easily used by non-
mathematicians; the protocol for calculation of the Michaelis constant Km

suggested in [17] has been later modified [16] and is still used in practice.

However, the MM-equation (4) gives good approximation only under
certain conditions [9], [28]. Thus the condition e0 << s0 assures good
approximation and is ubiquitous for many fermentation processes, but is
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not present e.g. in living cells [25]. Next we propose methods and tools for
the computation of the Michaelis constant based on the general system of
differential equations induced by Henri’s reaction scheme (3).

2.3 Enzyme kinetics induced by Henri’s reaction scheme

Figure 2: Graphics of the solutions of system (5)

Denote the concentrations s = [S], e = [E], c = [SE], p = [P ].
Applying the Mass Action Law to Henri’s reaction scheme (3) we obtain
the general ODEs system:

ds

dt
= −k1es+ k−1c,

de

dt
= −k1es+ (k−1 + k2)c,

dc

dt
= k1es− (k−1 + k2)c,

dp

dt
= k2c,

(5)

to be further briefly denoted as HMM-system in tribute to the pioneering
work of Henri [11]–[14] and Michaelis and Menten [17].

Remark. Note that the Mass Action Law applied to any reaction
scheme induces an ODE system in an unique way. For example, in the case
of system (5) the first equation for s says that the rate of change of the
concentration [S] is made up of a loss rate proportional to se = [S][E] and
a gain rate proportional to c = [SE].
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If the rate constants k′s are known, then the HMM-system (5) can be
treated as an initial ODE problem with initial conditions s(0) = s0 >
0, e(0) = e0 > 0, c(0) = 0, p(0) = 0. However, in practice these constants
are not known and have to be found. The contemporary approach to this
task is to consider the rate constants as parameters in the HMM-system (5)
and to compute them by fitting the solutions of the system to available time
course experimental data, a problem to be considered in the next section.

The graphics of the solutions of the HMM-system (5) for a particular
set of initial values and rate constants are presented in Fig. 2.

Figure 3: Graphics of the substrate dynamics according to MM-model (4)
and HMM-system (5). The rate constants of (5) are k1 = 2.62, k−1 =
0.1, k2 = 1.25, initial conditions: s0 = 1, e0 = 1.5; the parameters of (4)
can be evaluated to Km = (k−1 + k2)/k1 = 0.51526, Vmax = k2e0 = 1.875

In Fig.3 the substrate uptake s is presented in two different ways. The
two graphics present the approximate solution for s to MM-model (4):
ds/dt = −Vmaxs/(Km + s) as well as the “true” solution of the HMM-
system (5).

6



In order to correctly compare the two solutions one has to establish
certain consistency relations between the parameters in the MM-equation
and the HMM-system. The presented solutions in Fig. 3 make use of the
familiar relations:

Vmax = k2e0
Km = (k−1 + k2)/k1,

(6)

induced by the derivation of the MM-equation from the HMM-system using
the quasi-steady-state assumption, cf. e.g [18].

The following numerical computations show how different the approxi-
mate substrate concentration solution s to the MM-equation may look like
depending on the value of the ratio of the initial values of the substrate
(s0) and the enzyme (e0).

2.4 Numerical computations of enzyme kinetic models with
various values for the ratio e0/s0

In this subsection we present the computational results of three numerical
examples for the comparison of the substrate dynamics of the two models
(4), (5) for different values of the ratio e0/s0. The values of the initial
conditions and the values of the rate constants ki, i = −1, 1, 2 in (5) are
chosen to be the same for all three examples. The initial values and the
rate parameters in (4) are consistent with those in (5); the relations (6):
Vmax = k2e0,Km = (k−1 + k2)/k1 have been used.

For completeness we also include the graphics of the solution of simple
decay equation (2). The rate constant k in the decay equation is chosen
to be equal to k1 and the enzyme concentration e in the right-hand side is
fixed as e = e0.

Example 1. The first numerical example shows how close the solutions
for the substrate to the MM-equation and the HMM-system can be when
e0/s0 is “small” (Figure 4).

The values of the parameters used in models (4), (5) are as follows:
initial conditions are s0 = 2.6, e0 = 0.06; everywhere below c0 = 0, p0 = 0.
The values of the rate parameters used in (5) are: k1 = 2.62, k−1 = 0.1, k2 =
1.25. The values of the parameters in (4) are Vmax = k2e0 = 0.075,Km =
(k−1 + k2)/k1 = 0.51526.

7



10 20 30 40 50 60 70
Time

0.2

0.4

0.6

0.8

1.0

Substrate concentration

First Order Reaction Kinetics Model
Enzyme Kinetics Model - Henri-Michaelis-Menten

Michaelis-Menten Model

Figure 4: The substrate solutions of (4), (5) for e0 << s0

From this numerical example we conclude that when the condition
e0 << s0 holds then the MM-model (4) can be a good approximation of the
“true” HMM-model (5). The form of the solutions for the substrate con-
centrations suggest the hypothesis that whenever the condition e0 << s0
holds then the uniform distance between the two solutions is of the order
of the ratio ε = e0/s0. As we know the MM-equation has been derived
from the HMM-system under the quasi-steady-state assumption involving
the condition ε close to zero.

Note that in this example the Michaelis constant Km used for the com-
putation of the approximate MM-solution is derived from the coefficients
ki in the exact HMM-model. This means that both models describe the
process dynamics using equivalent rate constants and, since we consider the
HMM-model to be true, this implies the approximate model is also valid
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under the assumption e0 << s0. Our next two numerical examples aim to
demonstrate what happens whenever this assumption does not hold.

Example 2. Our second numerical example shows how the substrate
solutions start to deviate when s0 and e0 are close to each other (Figure 5).
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Figure 5: The substrate solutions of (4), (5) for e0 ∼ s0.

The values of the parameters used for this example are as follows: s0 =
1, e0 = 0.6, k1 = 2.62, k−1 = 0.1, k2 = 1.25. As before, using using (6) we
obtain: Vmax = k2e0 = 0.75,Km(k−1 + k2)/k1 = 0.51526.

Example 3. In this numerical example e0 > s0. The values of the
parameters used for the given solution are as follows: initial values s0 =
1, e0 = 1.5; rate constants k1 = 2.62, k−1 = 0.1, k2 = 1.25. Calculated as
above, we have Vmax = k2e0 = 1.875,Km(k−1 + k2)/k1 = 0.51526.

One can observe that the HMM-solution for the substrate concentration
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is even closer to the exponential decay solution (Figure 6).
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Figure 6: The substrate solutions of (4), (5) for e0 > s0

Examples 2 and 3 clearly show that the MM-model’s solutions are far
from those of the exact HMM-system despite taking care of the consistency
of the parameters used in (4) and (5). Such a discrepancy between the
two solutions can be expected as the condition ε close to zero used for the
derivation of the approximate MM-model has been violated.

In order to study the dynamics of the fermentation processes, we next
focus on the HMM-system. Our goal is to obtain a good fit of the HMM-
system to available time course experimental data keeping in mind the
measurement errors contained in the data. The model parameters obtained
from the fit of the experimental data are then compared to rate constants
from the literature corresponding to the same physical processes. This
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allows us to also verify the correctness of the dynamics suggested by the
model.
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Figure 7: An example of the usage of dynamical numeric solution of the
systems and their graphical representation. The plots are prepared using
CAS Mathematica

3 Computation of the rate parameters of the HMM-
system using time course experimental data

3.1 Fitting the HMM-system against experimental data of
acetylcholine hydrolysis

The following plots demonstrate the process of model-fitting against ex-
perimental data using the HMM system. The physical process we use as
an example is the acetylcholine hydrolysis by acetylcholinesterase [29]. Ex-
perimental data has been obtained for the substrate, product and enzyme
concentrations over the time course of the experiment. We take into account
the measurement errors in the data and they are displayed as concentration
intervals for each point in the plots.

The experimental data has been obtained using the rate constants from
the Results section (Hydrolysis of ACH + ACHE2, HXA method) of [29] in
the following way - the solutions of (5) were computed with the given rate
constants. We evaluated the solutions s(t), e(t), p(t) for a number of time
points ti and we added a certain amount of noise to them in accordance to
the standard deviations given in [29].
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Our computational problem can be formulated as follows. Given time
course experimental data (together with measurement errors) for the sub-
strate, enzyme and product concentrations find values for the parameters
k−1, k1, k2 and initial values E0, s0 such that the solution of the HMM sys-
tem (5) fit well against the experimental data and possibly fit into the
measurement intervals. Our procedure for solving this problem passes in
two stages: first we find an initial rough “guess” for the parameter values,
then we consecutively improve the parameter set, resp. the solutions, using
some optimization possibilities of the numerical computing environment
MATLAB. More precisely, we’ve used MATLAB’s lsqnonlin procedure (op-
timization algorithm defaults to Trust-Region-Reflective Algorithm), where
the minimized function 1) computes the enzyme kinetics model solutions
(using ode23 or ode23s solvers) for a given set of rate constants and initial
conditions (optimization procedure parameters), 2) evaluates the solutions
for the time points ti corresponding to the observations and 3) subtracts
the experimental data from them.

The initial parameter “guess”-values are obtained using the Manipulate
and NDSolve functions of CAS Mathematica in order to get a rough fit of
the experimental data, Fig. 7. These values are used only as an initial guess
in the optimization procedure. The solution of the ODEs HMM-system (5)
with initial guess parameters is shown on Figure 8. The values of the param-
eters used for the given solution are as follows: k1 = 25000m−1s−1, k−1 =
0s−1, k2 = 10s−1; s0 = 2.5 ∗ 10−3m, e0 = 5.4 ∗ 10−8m.

The results of the optimization procedure we applied using the initial
parameters can be seen on Figure 9 and Figure 10. Figure 9 represents the
slow process [4] (the synthesis of products; the process is governed by the
rate constant k2 and it’s the focus of the Michaelis-Menten approximation),
while Figure 10 represents the fast process (described by enzymes binding
to substrate in order to form a complex; the process is governed by the rate
constants k1, k−1).

The values of the parameters used for the given solution are as follows:
k1 = 16847m−1s−1, k−1 = 7s−1, k2 = 12s−1; s0 = 2.5 ∗ 10−3m, e0 = 5.4 ∗
10−8m. Using the parameter set we have found to solve the HMM-system
we get solutions that fit nicely the experimental data we started with.

The Michaelis constant can be derived from the optimal parameters in
the HMM-system, using that Km = (k−1 + k2)/k1, which gives us Km =
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Figure 8: The numerical solution of the HMM-system with an initial pa-
rameter “guess” set of the unknown parameters
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Figure 9: The numerical solution of the HMM-system (5) after the fitting
of the model

0.00112m. This value is close to known values of Michaelis constant from
other sources ([6], [10]). We can conclude that the model estimates correctly
the behavior of the underlying biochemical process.

The MM-model (4) on the other hand provides very different results for
the same experimental data (Figure 11). Although the obtained parameters
(Vmax = 7.12 ∗ 10−7ms−1;Km = 2.193 ∗ 10−3m) are relatively close to the
real ones, the solutions do not pass through the intervals of the data. As in
2.4, Example 2 and Example 3, the approximate model’s solutions deviate
from the real ones even though its parameters may be close to the exact
model’s rate constants. This can easily be explained by the fact that the
complex c has more complicated dynamics (see Figure 9 for the dynamics
of c and e) than what the MM-model can estimate. A rather good fit using
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Figure 10: The numerical solution of the “fast” reaction. The solutions of
the substrate and the product are barely visible on the graphic due to their
limited change from the initial values.

the same approximate model (4) can be achieved by omitting the first
observation data point of the enzyme (Figure 12). The values of the model
parameters (Vmax = 6.6 ∗ 10−7ms−1;Km = 1.26 ∗ 10−3m) are even closer
to those found using the HMM model. In general, we cannot expect data
points related to the “faster” reaction (taking place during the tc timescale)
to be approximated well with the MM-model because it is entirely focused
on the “slower” reaction and the solutions we get cannot possibly follow
the dynamics during both timescales.
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Figure 11: The numerical solution of the MM-model after fitting it to the
experimental data
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Figure 12: The numerical solution of the MM-model after fitting it to the
experimental data. The first experimental data point for the enzyme has
been omitted from the optimization.
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3.2 Fitting the model against experimental data of biochem-
ical nitrate reduction

Our modeling approach has been applied to experimental data of biochem-
ical nitrate reduction [19], which consists of observations for the substrate
variable. The measurement errors are in the range 5% to 7%. The solu-
tions of the HMM-system and the MM-model are compared in regard to
the wellness of the fit they provide for the experimental data as well as the
correctness of the obtained rate constants in the context of the underlying
process dynamics.
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Figure 13: The numerical solution of the HMM-system after fitting the
model to the experimental data

The values of the optimized HMM-system parameters are:
k1 = 106 m−1 min−1, k−1 = 0min−1, k2 = 0.4min−1; s0 = 0.8mm, e0 =
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0.042mm. The numerical solutions for the substrate, enzyme, complex
and product are displayed on Figure 13. The Michaelis constant derived
from the above mentioned parameter values is Km = 0.4µm, and Vmax =
0.0168 mm min−1.
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Figure 14: Nitrate reduction fit according to the MM-model

The result of the MM-model fitting is displayed on Figure 14. The
values of the optimized parameters are: Vmax = 0.017658 mmmin−1;Km =
0.1µm.

As we can see from Figure 13 the dynamics of the process in this case
study is in compliance with the assumptions of the MM-model, namely
that the complex c and the enzyme e are in equilibrium. The obtained pa-
rameters from both the HMM-system and the MM-model are close to each
other. Although the number of experimental data points for the case study
is very limited, we may still conclude that both models under consideration
can be suitable for studying the underlying process.

In another paper [19] the value of Km was estimated as 0.04mm.
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4 Concluding remarks

The present paper is devoted to computational experiments for the clas-
sic Henri-Michaelis-Menten enzyme kinetic scheme and the approximate
Michaelis-Menten model, derived under the quasi-steady-state assumption.
A comparison of the results from the two models with experimental data
is also shown. The given examples demonstrate the advantages of the ex-
act model in comparison to the approximate models. The topic has been
thoroughly analyzed by other authors [31] in terms of the magnitude of the
error of the approximate models and the conditions under which they are
adequate. In this paper we present an approach of numerical analysis ap-
plying the model proposed by V. Henri, while using contemporary software
tools.

There are many benefits of using the Henri’s reaction scheme when
studying biological processes. Even complex systems (e.g. metabolic net-
works) with many reactants or consisting of several interconnected Michaelis-
Menten reactions can be modeled accurately in contrast to simpler models
where many approximations may contradict with the behavior of the whole
system. Working with models that follow directly from physical/chemical
laws allows for deeper, more serious analysis of the process due to the level
of detail they provide over the reactions that take part in it. For example,
all rate constants ki have been obtained for the considered models part
of our case studies which could be essential to subsequent analysis. Fur-
thermore, the parameters of the approximate model can also be obtained
from these rate constants, allowing us to validate our results against known
values of the classic Michaelis constant.

Such approximate models may have been used with more care in the
past since they are computationally intensive when it comes to numerical
experiments, but this should hardly be considered an issue nowadays. There
are also very rich software products which provide powerful tools for the
numerical experiments and analysis of complex physical processes.

A topic worth further analysis as a potential future direction would be
whether we could fit a time series using Calder’s sigma-isocline [30] instead
of the QSSA.

20



5 Acknowledgements

This work was accomplished within the project HYSULFCEL supported
by the programme BS-ERA.NET (FP7 of the European Union), grant
DNS7FP 01/32 of the Ministry of Education and Science, Republic of Bul-
garia.

References

[1] Berberan-Santos, Mario, N., A General Treatment of Henri-Michaelis-
Menten Enzyme Kinetics: Exact Series Solution and Approximate An-
alytical Solutions, MATCH Commun. Math. Comput. Chem. 63, 283–
318, 2010.

[2] Beschkov, V., S. Velizarov, S. N. Agathos, V. Lukova, Bacterial deni-
trification of wastewater stimulated by constant electric field, The Bio-
chemical Engineering Journal 17 (2), 141–145 (2004).

[3] Cermak, Nate, Fundamentals of Enzyme Kinetics: Michaelis-Menten
and Deviations, 2009
http://cermak.scripts.mit.edu/papers/

383final cermak enzymekinetics 20090312.pdf

[4] Chen, William W., Mario Niepel, Peter K. Sorger, Classic and contem-
porary approaches to modeling biochemical reactions, Genes Dev 24:
1861–1875 (2010).

[5] Deichmann, U., S. Schuster, J.-P. Mazat, A. Cornish-
Bowden, Commemorating the 1913 Michaelis-Menten paper
Die Kinetik der Invertinwirkung: three perspectives, FEBS
Journal 281 (2014), 435–463. (see Part 3: before Michaelis
and Menten: Victor Henris equation by Jean-Pierre Mazat)
http://onlinelibrary.wiley.com/doi/10.1111/febs.12598/pdf

[6] Forsberg, Ake, Kinetics for the inhibition of acetylcholinesterase from
the electric eel by some organophosphates and carbamates, Eur. J .
Biochem. 140, 153–156 (1984).

21



[7] Goudar, C.T., J.R. Sonnad, R.G. Duggleby, Parameter estimation using
a direct solution of the integrated Michaelis-Menten equation, Biochim-
ica et Biophysica Acta 1429 (1999), 377–383.

[8] Goudar, C.T., S.K. Harris, M.J. McInerney, J.M Suflita (2004). Progress
curve analysis for enzyme and microbial kinetic reactions using explicit
solutions based on the Lambert W-function. Journal of Microbiological
Methods 59, 317–326.

[9] Grima, R., N. G. Walter, S. Schnell, Single molecule enzymology
a la Michaelis-Menten. FEBS Journal 281, (2014) 518–530. DOI:
10.1111/febs.12663

[10] Hai, Aviad, et al., Acetylcholinesterase-ISFET based system for the
detection of acetylcholine and acetylcholinesterase inhibitors, Biosensors
and Bioelectronics 22 (2006), 605–612.

[11] Henri, V., Recherches sur la loi de laction de la sucrase. C. R. Hebd.
Acad. Sci., 133, 891–899 (1901).

[12] Henri, V., Ueber das Gesetz der Wirkung des Invertins. Z. Phys.
Chem., 39 (1901), 194–216.

[13] Henri ,V., (1902) Theorie generale de laction de quelques diastases. C
R Hebd Seances Acad Sci 135, 916–919.

[14] Henri, V., (1903) Lois generales de laction des diastases. Hermann,
Paris.

[15] Johnson, Kenneth A., Roger S. Goody, The Original Michaelis Con-
stant: Translation of the 1913 Michaelis–Menten Paper, Biochemistry,
50 (39): 8264–8269, 2011.
doi:10.1021/bi201284u.

[16] Lineweaver, H., D. Burk, The Determination of Enzyme Dissociation
Constants, Journal of the American Chemical Society 56 (3): 658–666,
1934. // doi:10.1021/ja01318a036.

[17] Michaelis, L., M. L. Menten. Die Kinetik der Invertinwirkung.
Biochem. Z. 49, (1913), 333–369.

22



[18] Murray J. D., Mathematical Biology: I. An Introduction, Third Edi-
tion, Springer, 2002.

[19] Parvanova-Mancheva Ts., V. Beschkov, Ts. Sapundzhiev, Modeling of
biochemical nitrate reduction in constant electric field, Chemical and
Biochemical Engineering Quarterly, 23 (1), 67-75 (2009)

[20] Pedersen, Morten Gram, Alberto M. Bersani, Enrico Bersani, Giu-
liana Cortese, The total quasi-steady-state approximation for complex
enzyme reactions, Mathematics and Computers in Simulation 79 (2008)
1010–1019.

[21] Roussel, M.R., S.J. Fraser, Accurate steady-state approximations: Im-
plications for kinetics experiments and mechanism, J. Phys. Chem. 95
(1991) 8762–8770.

[22] Roussel, M.R., A rigorous approach to steady-state kinetics applied
to simple enzyme mechanisms, PhD thesis, Department of Chemistry,
University of Toronto, 1994.

[23] Schnell, S., C. Mendoza, A closed form solution for time-dependent
enzyme kinetics. Journal of theoretical Biology, 187 (1997): 207–212.
http://dx.doi.org/10.1006/jtbi.1997.0425

[24] S. Schnell, C. Mendoza, Time-dependent closed form solution for
fully competitive enzyme kinetics, Bulletin of Mathematical Biology
62 (2000), 321–336.

[25] Schnell, S., P. K. Maini. 2000. Enzyme kinetics at high enzyme con-
centration. Bull. Math. Biol. 62, 483–499.

[26] Schnell, S., P. K. Maini (2003). A century of enzyme kinetics: Relia-
bility of the Km and vmax estimates. Comments on Theoretical Biology
8, 169–187.

[27] Schnell, S., Chappell, M. J., Evans, N. D., M. R. Roussel, The mech-
anism distinguishability problem in biochemical kinetics: The single-
enzyme single-substrate reaction as a case study. C. R. Biologies 329,
51–61 (2006).

23



[28] Schnell, S., Validity of the Michaelis-Menten equation - Steady-state,
or reactant stationary assumption: that is the question. FEBS Journal
281, (2014) 464–472. DOI: 10.1111/febs.12564

[29] Zdrazilova, P. et al., Kinetics of Total Enzymatic Hydrolysis of Acetyl-
choline and Acetylthiocholine, Zeitschrift fur Naturforschung 61 (3–4),
289–294, 2006.

[30] M. S. Calder, D. Siegel, Properties of the Michaelis-Menten mechanism
in phase space, J. Math. Anal. Appl. 339 (2008) 1044-1064.

[31] R. F. Brown, M. T. Holtzapple, Parametric Analysis of the Errors As-
sociated with the Michaelis-Menten Equation, Biotechnology and Bio-
engineering. 36 (11) (1990) 1141-1150

24


	Introduction
	Enzyme kinetic basic models
	Henri-Michaelis-Menten reaction scheme
	Michaelis-Menten equation
	Enzyme kinetics induced by Henri's reaction scheme
	Numerical computations of enzyme kinetic models with various values for the ratio e0/s0

	Computation of the rate parameters of the HMM-system using time course experimental data
	Fitting the HMM-system against experimental data of acetylcholine hydrolysis 
	Fitting the model against experimental data of biochemical nitrate reduction

	Concluding remarks
	Acknowledgements

