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Abstract

We focus on some computational, modelling and approximation
issues related to the logistic sigmoidal function and to Heaviside step
function. The Hausdorff approximation of the Heaviside interval step
function by sigmoidal functions is discussed from various computa-
tional and modelling aspects. Some relations between Verhulst model
and certain biochemical reaction equations are discussed and ana-
lyzed. Numerical examples are presented using CAS Mathematica.
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1 Introduction

Many biological dynamic processes, such as certain enzyme kinetic and pop-
ulation growth processes, develop almost step-wise [9], [13]. Such processes
are usually described or approximated by smooth sigmoidal functions; such
functions are widely used in the theory of neural networks [3], [4]. Step-wise
interval functions are a special class of sigmoidal functions; such functions
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are “almost” continuous, or Hausdorff continuous (H-continuous) [2]. De-
pending on the particular modelling situation one may decide to use either
continuous or H-continous (step-wise) functions. Moreover, in many cases
both types of modelling tools can be used interchangeably. This motivates
us to study the closeness of both classes of functions. To substitute a sig-
moidal function by a step function (or conversely) we need to know the
approximation error between the two functions. A natural metric used in
such a situation is the Hausdorff metric between the graphs of the functions.
To this end we recall some basic results concerning the class of interval
Hausdorff continuous functions and the related concept of Hausdorff ap-
proximation. We then focus on classes of logistic sigmoidal functions which
are solutions of the Verhulst population model. We demonstrate that Ver-
hulst model arises from simple autocatalytic (bio)chemical reactions and
thus can be considered as special case of a biochemical reproduction re-
action mechanism. The latter implies a more general model that permits
the formulation of some important modelling and computational problems
including nonautonomous, impulsive and delay DE.

In section 2 we consider sigmoidal and step functions arising from bi-
ological applications. The Hausdorff distance between the Heaviside step
function and the sigmoidal Verhulst function is discussed. In section 3 we
discuss certain kinetic mechanisms yielding Verhulst model via the mass
action law. We show that the Verhulst model arises from some simple
autocatalytic (bio)chemical reactions.

2 Sigmoidal and step functions

2.1 Hausdorff continuity

The concept of Hausdorff continuity (H-continuity) generalizes the familiar
concept of continuity so that essential properties of the usual continuous real
functions remain present. It is possible to extend the algebraic operations
on the set of continuous real functions C(Ω) to the set H(Ω) of H-continuous
functions in such a way that the set H(Ω) becomes a commutative ring and
a linear space with respect to the extended operations [2]. In this work
we restrict ourselves to functions of one real variable, that is real functions
defined on a subset Ω ⊆ R.
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2.2 Step functions

For r ∈ R denote by hr ∈ H(R) the (interval) Heaviside step function given
by

hr(t) =


0, if t < r,

[0, 1], if t = r,

1, if t > r,

(1)

cf. Fig. 1. For r = 0 we obtain the basic Heaviside step function

h0(t) =


0, if t < 0,

[0, 1], if t = 0,

1, if t > 0.

(2)

Functions (1)–(2) are examples sigmoidal functions. A sigmoidal func-
tion on R with a range [a, b] is defined as a monotone function s(t) : R →
[a, b] such that limt→−∞ s(t) = a, limt→∞ s(t) = b.

2.3 Sigmoidal cut functions

One may consider continuous (or even smooth) or discontinous sigmoidal
functions. Within the class of H-continuous interval functions, the Heavi-
side step function is a particular case of sigmoidal function. An example of
a continuous sigmoidal function is the “cut function” defined as

c[a,b](t) =


0, if t ≤ a,

(t− a)/(b− a), if a < t < b,

1, if t ≥ b.
(3)

The cut function (3) is visualized on Fig. 2.

2.4 Sums of sigmoidal functions

For a given vector r = (r1, r2, ..., rk) ∈ Rk, such that r1 < r2 < ... < rk,
and a vector α = (α1, α2, ..., αk) ∈ Rk denote

H(r, α; t) = Σk
i=1αihri(t). (4)

Function (4) is a step function with k steps (jumps). Using suitable
values for rk and αk one can represent a histogram, such as the one of Fig.
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Figure 1: A step function (1) with jump at r = 10

Figure 2: Cut function

3, as a sum of step functions of the form (4); in that case we usually have
rk = r1 + hi, i = 1, ..., k and Σk

i=1αi = 0. Similarly, one can construct sums
of other suitably shifted sigmoidal functions.

2.5 Hausdorff distance

Let us recall that the Hausdorff distance (H-distance) ρ(f, g) between two
functions f, g ∈ H(Ω) for Ω ⊆ R is defined as the distance between their
completed graphs F (f) and F (g) considered as closed subsets of R2 [7],
[14]. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||}, (5)
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Figure 3: A histogram (from wikipedia)

wherein ||.|| is a norm in R2. According to (5) the H-distance ρ(f, g) be-
tween two functions f, g ∈ H(Ω) for Ω ⊆ R makes use of the maximum norm
in R2 so that the distance between the points A = (tA, xA), B = (tB, xB)
in R2 is given by ||A−B|| = max(|tA − tB|, |xA − xB|).

2.6 The logistic sigmoidal function

Sigmoidal functions find multiple applications to neural networks and cell
growth population models [4], [9].

Several practically important families of smooth sigmoidal functions
arise from population dynamics. A classical example is the Verhulst pop-
ulation growth model to be discussed below. Verhulst model makes an
extensive use of the “logistic” sigmoidal function

s0(t) =
a

1 + e−kt
, (6)

see Fig. 4. We next focus on the approximation of the Heaviside step
function (2) by logistic functions of the form (6) in Hausdorff distance.

2.7 Approximation issues

In what follows we shall estimate the H-distance (5) between a step function
and a logistic sigmoidal function. W. l. g. we can consider the Heaviside
step function f = ah0 and the logistic sigmoidal function (6): g = s0.
As visualized on Fig. 5, the H-distance d = ρ(f, g) = ρ(ah0, s0) between
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Figure 4: Logistic sigmoidal function (6)

Figure 5: Reaction rate k = 20; Hausdorff distance d = 0.106402

the step function ah0 and the sigmoidal function s0 satisfies the relations
0 < d < a/2 and a− s0(d) = d, that is

(a− d)/d = ekd, (0 < d < a/2). (7)

Obviously d → 0 implies k → ∞ (and vice versa). From (7) we obtain
a straightforward expression for the rate parameter k as a function of d:

Proposition 1. The rate parameter k can be expressed in terms of the
H-distance d as follows:

k = k(d) =
1

d
ln
a− d
d

= O(d−1 ln(d−1)). (8)
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Figure 6: Reaction rate k = 40; Hausdorff distance d = 0.0661748

Relation (8) gives the rate k in terms of the H-distance d, a few examples
are computed in Table 1.

Dist. d 10−1 10−2 10−3 10−4 10−5 10−6

Rate k 0.22× 102 0.46× 103 0.69× 104 0.92× 105 0.12× 107 0.14× 108

Table 1: Values of the rate k as function of the H-distance d according to
(8)

Conversely, a relation for the H-distance d in terms of the rate parameter
k is given in the next proposition. For simplicity we assume below a = 1,
considering thus the basic logistic function as depending only on the rate
k: s0(t) = (1 + e−kt)−1.

Proposition 2. [2] The Hausdorff distance d = ρ(h0, s0) between the Heav-
iside step function h0 and the sigmoidal Verhulst function s0 can be ex-
pressed in terms of the the reaction rate k for any real k ≥ 2 as follows:

dl(k) =
ln(k + 1)

k + 1
− ln ln(k + 1)

k + 1
< d(k) <

ln(k + 1)

k + 1
= dr(k), (9)

or

d(k) =
ln(k + 1)

k + 1
(1 +O (ε(k))) , ε(k) =

ln ln(k + 1)

ln(k + 1)
. (10)
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Figure 7: Reaction rate k = 200; Hausdorff distance d = 0.01957.

A proof of relations (9)–(10) is given in [2]. Some computational exam-
ples using relations (9)–(10) are presented in Table 2, see also Figures 6, 7,
resp. Appendix 1. The last column of Table 2 contains the values of d for
prescribed values of k computed by solving the nonlinear equation (7).

k dl(k) dr(k) ∆ = dr − dl ε(k) d(k) by (7)

2 0.334 0.366 0.032 0.0856 0.337416
100 0.0305 0.0456 0.015 0.3313 0.033592
1000 0.00497 0.00691 0.0019 0.2797 0.005245
10000 0.000698 0.000921 0.00022 0.2410 0.000723

Table 2: Bounds for d(k) computed by (9)–(10) for various rates k

Remarks. a) For the general case a 6= 1 one should substitute every-
where in formulae (9)–(10) the expression k+ 1 by k+a−1. b) An estimate
similar to (10) in integral metric has been obtained in [6].

2.8 Shifted logistic functions

Here we are interested in arbitrary shifted (horizontally translated) logis-
tic functions. Both the step function and the logistic function preserve
their form under horizontal translation—note that Verhulst equation pos-
sess constant isoclines. Hence the shifted step function hr is approximated
by the shifted logistic function sr in the same way as function h0 is approx-
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Figure 8: A logistic function shifted with r = 0.5.

imated by the basic logistic function s0, that is for the H-distance we have
ρ(hr, sr) = ρ(h0, s0). Focusing on the shifted logistic function we have

sr(t) = s0(t− r) =
a

1 + e−k(t−r)
. (11)

The value of the (basic) logistic function (6) at the point −r is

s0(−r) =
a

1 + ekr
.

Figure 8 visualizes a logistic function shifted with r = 0.5.

3 Kinetic mechanisms yielding Verhulst model

In this section we demostrate that Verhulst model can be derived from
certain (bio)chemical reaction equatiosn using mass action kinetics. It is
worth noting that Verhulst model was invented some 30-40 years before the
invention of the Mass Action Law. Let us recall the mass action law in its
kinetic aspect.

The Law of Mass Action states that the rate of change in concentration
of each reactant in a chemical reaction is proportional to the product of the
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concentrations of the reactants in that reaction. If a particular reactant
is involved in several reactions, then the rate of change of this reactant is
made by adding up all positive rates and subtracting all negative ones [12].

3.1 A simple autocatalytic reaction

Consider the following autocatalytic reversible reaction mechanism:

X
k−→←−

k−1

X +X, (12)

which can be also written as X
k−→←−

k−1

2X.

Applying the mass action law we obtain the Verhulst model:

x′ = kx− k−1x2 = kx(1− (k−1/k)x). (13)

The stationary point is x∗ = k/k−1.

Another kinetic mechanism inducing Verhulst model that seems theo-
retically possible and better practically justified follows.

3.2 Autocatalytic reaction involving nutrient substrate

Consider the following autocatalytic reaction equation:

S +X
k′−→ X +X, (14)

(or S + X
k′−→ 2X), where S is a nutrient substance, X is a popula-

tion and k′ is the specific growth rate of the particular population. The
biological (biochemical) interpretation of reaction equation (14) is that the
substrate S is utilized by the population X leading to the reproduction
of the population (simple binary fusion reproduction in the case of bacte-
rial cells population). Denoting the biomass (or density) of X by x and
the mass (concentration) of S by s and applying the mass action law, one
obtains the following dynamical system for functions s(t), x(t):

ds/dt = −k′xs,
dx/dt = k′xs, s(0) = s0, x(0) = x0.

(15)
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Figure 9: Reaction rate k = 40; s0 = 1, x0 = 1.× 10−9

The solutions s, x of (15) for reaction rate k = 40 and initial conditions
s0 = 1, x0 = 1.× 10−9 are iluustrated on Fig. 9, see Appendix 2. Noticing
that ds/dt+dx/dt = 0, hence s+x = const = x0+s0 = a, we can substitute
s = a−x in the differential equation for x to obtain the differential equation
dx/dt = k′sx = k′x(a− x) also known as Verhulst model [15]–[17].

dx

dt
= k′x(a− x). (16)

Clearly, the solution x of the initial problem (15) coincides with the
solution x of problem (16) with initial condition x(0) = x0:

dx

dt
= k′x(a− x). x(0) = x0. (17)

Conversely, the solution of (17) coincides with the solution x of the inital
problem (15) whenever s0 = a− x0. The above can be summarized in the
following:

Proposition 3. The autocatalytic reaction (14) via mass action kinetic
induces the dynamic model (15). Models (15) and (17) are equivalent in
the sense that their solutions x coincide (for x0 + s0 = a).

We see that the underlying mechanism in Verhulst model (17) is a bio-
chemical reproduction reaction (14) based on the utilization of a nutrient
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Figure 10: Reaction rate k = 40, r = 0.5, x0 = 1.85× 10−9

substrate. This explains the important versatile applications of Verhulst
model.

The Verhulst model is usually written with a normalized rate constant
k = k′/a as

dx

dt
=
k

a
x(a− x) = kx

(
1− x

a

)
. (18)

The solution x to equation (19) with initial condition x0 = a/2, is the
(basic) logistic sigmoidal function:

s0(t) =
a

1 + be−kt
; b =

a− x0
x0

= 1,

that is (6).

3.3 Nutrient supply as input function

The Verhulst model can be considered as a prototype of models used in
bioreactor modelling. There, especially in the case of continuous bioreac-
tore, the nutrient supply is considered as an input function s(t) as follows:

dx

dt
= kx(t)s(t), (19)

where s is additionally specified.

The solution x for the input nutrient function s(t) = (Sign(r− t)+1)/2
obtained by a Mathematica module is given in Appendix 4, see Fig. 10.
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Figure 11: Reaction rate k = 40; r = 0.6

3.4 Computational issues

The shifted logistic function (11) can be computed as a solution of the
Verhulst model (16); in that case we need to know a suitable initial con-
dition for equation (16). The shifted (by r) logistic function (11) can be
considered as solution of the initial problem:

dx

dt
=
k

a
x(a− x), x(0) = x0 = a/(1 + ekr). (20)

As r increases the computational time for solving problem (20) increases
rapidly if large values of k have been used (in order to achieve good ap-
proximation of the step function). As an example, on CAS Mathematica
for kr > 30 the computations fails, whenever using formula (20) for the
computation of the shifted logistic function, see Fig. 11 corresponding to
a case kr ≤ 30 and Fig. 12 for the case kr > 30, cf. Appendix 3. We
note that within such an approach very small values (for the distance d)
and very large values (for the rate k) are simultaneously involved in the
computation.

In order to reduce the computational problems in CAS Mathematica
the user should take care with specifying facilities such as AccuracyGoal,
PrecisionGoal, and WorkingPrecision.
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Figure 12: Solution of (20) fails for kr > 30

4 Conclusions

H-continuous step functions and smooth sigmoidal functions are used to
model biological dynamic processes, in particular certain enzyme kinetic
and population growth processes which develop almost step-wise [9]. Such
processes are usually described or approximated by smooth sigmoidal func-
tions (especially in the theory of neural networks), however, H-continuous
step-wise functions can be also conveniently used. To substitute a sigmoidal
function by a step function (or conversely) we need to know the approxi-
mation error as given in Proposition 2. Biological processes are often very
sensitive and can be effectively studied within the frames of interval analy-
sis [8]. Verhulst model is an important classical example involving a simple
logistic sigmoidal function as solution. We demonstrate that this model is
induced by simple autocatalytic reactions that describe certain reproduc-
tion biochemical mechanisms. On a number of computational examples
we demonstrate the applicability of the logistic function to approximate
the Heaviside step function and consequently to be emploit in fitting time
course experimental data related to population dynamics.
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Appendix 1. Calculation of the value of the Hausdorff distance d between the
Heaviside step function h and the sigmoidal Verhulst function s in terms of the reaction
rate k
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Appendix 2. A kinetic mechanism yielding Verhulst model
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Appendix 3. The general case

Appendix 4. Nutrient supply as input function
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