Mathematical Model for Temperature Regulation of Self-Sustained Glycolytic Oscillations in a Closed Reactor
DOI:
https://doi.org/10.11145/102Abstract
We base on the Selkov system [1] to construct the model for temperaturecontrol of glycolytic reaction in a closed spatial reactor. To establish acorrespondence with the experiment [2] we add the slow catalytic term xwhich describes the small value of additional substrate influx and productoutflow and introduce a temperature-dependent coefficient satisfying theArrhenius law...
The considered model explains the key experimentally observed phenomena[2]: 1) decaying of the average concentrations of reagents duringthe reaction, 2) Arrhenius-type temperature dependence for frequency of oscillations,3) change of the form of oscillations with the temperature growth,4) modulations of oscillations induced by a periodic temperature variation.The addition of the diffusion terms to the system (1) allows to reproducethe emerging of glycolytic travelling waves observed in a closed reactor inthe presence of a temperature gradient [2]. Comparison of the dynamics of travelling waves in the numerical solution with the experimental data [2]permits to propose a new method to estimate the diffusion coefficients of reagents in the case of a chemical reaction occurring in a dense media
Downloads
Published
Issue
Section
License
The journal Biomath Communications is an open access journal. All published articles are immeditely available online and the respective DOI link activated. All articles can be access for free and no reader registration of any sort is required. No fees are charged to authors for article submission or processing. Online publications are funded through volunteer work, donations and grants.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).