Branching Stochastic Evolutionary Models of Cell Populations
DOI:
https://doi.org/10.11145/bmc.2019.10.229Abstract
This review paper surveys results on branching stochastic models with and without immigration published during the past nine years. Studies of this class of stochastic models were motivated by the quantitative analysis of the dynamics of population of cells of the central nervous system, called the terminally differentiated oligodendrocytes, and their progenitor cells. We focus on original ideasspecifically developed for Sevastyanov branching processes allowing the contribution of an external cellular compartment (e.g., stem cells) via a
nonhomogeneous Poisson immigration process. Limiting distributions are discribed in the subcritical, critical and supercritical cases for various immigration rates.
Downloads
Published
Issue
Section
License
The journal Biomath Communications is an open access journal. All published articles are immeditely available online and the respective DOI link activated. All articles can be access for free and no reader registration of any sort is required. No fees are charged to authors for article submission or processing. Online publications are funded through volunteer work, donations and grants.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).