Genes of Ecological Networks
DOI:
https://doi.org/10.11145/448Abstract
An ecological network consists of flow rates of conserved quantities (biomass, energy, Carbon) among a set of compartments (species). While this data is relatively small in size, its collection from field experiments can be extremely challenging. Mathematical and computational methods used to model and analyze ecological networks need to cope with (partial) lack of data and low quality data (due to experimental errors and external factors.) This situation is in contrast to other branches of life sciences, having the privilage to mine the abundant data afforded by high throughput experimental techniques such as microarrays. Ecosystem ecology has to make the most of its hard earned little data available. Therefore we ask the following question: Is there a transform that maps the available data to a much larger data set that we can mine using advanced machine learning techniques? Are there any hidden smaller constituents that make up a flow rate between two compartments?We identify these constituents that are analogous to genes in living organisms. It is possible to use machine learning to extract useful information by identifying which constituents (genes) of the ecosystem model are responsible of a specific trait, such as response to an environmental impact, climate change, or species extinctions. We demonstrate our methodology on a model of the Neuse River Estuary, which has only seven compartments and 34 flows, but 640 constituents (genes). While the seasonal variations are not clearly apparent in the collected experiemtal data, we were able to identify only 3 constituents (out of the 640) that determines the seasonal variations with 100% accuracy.
Downloads
Published
Issue
Section
License
The journal Biomath Communications is an open access journal. All published articles are immeditely available online and the respective DOI link activated. All articles can be access for free and no reader registration of any sort is required. No fees are charged to authors for article submission or processing. Online publications are funded through volunteer work, donations and grants.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).