Kink Formation Dynamics in a Single О±-helical Protein
DOI:
https://doi.org/10.11145/473Abstract
Protein folding remains an open problem despite the progress in understanding the process rate and the success in folding prediction for some small proteins. The reason is the absence of a constructive theoretical framework, both general and specific enough.In earlier papers, we have argued that protein-folding dynamics can be described in terms of solitons of a generalized discrete non-linear Schrodinger equation (GDNLSE) obtained from the energy function in terms of bond and torsion angles [1]. The soliton manifestation is the pattern helix--loop--helix in the secondary structure of the protein, which explains the importance of understanding loop formation in helical proteins and the kink assignment to it [2]. We propose a new mechanism for this process based on the energy transmission along the chain---a disturbance in the latter leads to energy accumulation sufficient to form a kink. We present first insights into the process dynamics by all-atom molecular-dynamics analysis of unfolding of a single alpha-helical protein–--one chain of the core structure of gp41 from the HIV envelope glycoprotein (PDB ID: 1AIK). We suggest an adequate quantification of the side-chain orientation dynamics and also identify some force-field related artefacts.Downloads
Published
Issue
Section
License
The journal Biomath Communications is an open access journal. All published articles are immeditely available online and the respective DOI link activated. All articles can be access for free and no reader registration of any sort is required. No fees are charged to authors for article submission or processing. Online publications are funded through volunteer work, donations and grants.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).