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Abstract

Limiting resource is a angular stone of the interactions between
species in ecosystems such as competition, prey-predators and food
chain systems. In this paper, we propose a planar system as an exten-
sion of Lotka-Volterra competition model. This describes two com-
petitive species for a single resource which are affected by intra and
inter-specific interference. We give its complete analysis for the exis-
tence and local stability of all equlibria and some conditions of global
stability. The model exhibits a rich set of behaviors with a multiplic-
ity of coexistence equilibria, bi-stability, tri-stability and occurrence
of global stability of the exclusion of one species and the coexistence
equilibrium. The asymptotic behavior and the number of coexistence
equilibria are shown by a saddle-node bifurcation of the level of re-
source under conditions on competitive effects relatively to associated
growth rate per unit of resource. Moreover, we determine the competi-
tion outcome in the situations of Balanced and Unbalanced intra-inter
species competition effects. Finally, we illustrate results by numerical
simulations.
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1 Introduction

In nature, organisms of a species members live in a area with other
populations species and resources they need for their growth. When a large
number of organisms affect other populations species by their presence or
absence, in some cases of mixed populations species, two or more species
interact in a food chain and prey-predator systems or compete for common
resources such as food, light, space, etc. In the situation of two species
compete with each other for the same resource, Hardin [1] argued that the
Competitive Exclusion Principle (CEP) formulated by Gause in [2] holds,
this means that the “better” competitor will eventually exclude the others.
This principle has been formally demonstrated in [3] with classical Lotka-
Volterra competition (LV) model analysis and set to theory [1].

Numerous evidences based on laboratory experiences and natural ob-
servations are supporting the CEP. Among them, the complexity of com-
petitive situations make unclear the predictive strength of the displayed
species as Thomas Park and his collaborator experiments showed in a closed
universe under various conditions [5]. Beyond this phenomena, the ob-
served diversity of certain communities such as coexistence of phytoplank-
ton species competing for very limiting resource is in apparent contradiction
with Gause’s law. This paradox was originally described in aquatic biol-
ogy by Hutchinson in [6], who suggested that it could be resolved by factors
such as vertical gradient of light or turbulence, symbiosis or commensalism,
differential predation or sufficiently frequent variations of the environment.

The generalization of (LV) model to more than two species have led
to deep ecological insights [7] and allowed to identify interesting ecologi-
cal phases and phase transitions [8, 9] without explain the phytoplankton
paradox foundation. The implicit description of resources in play for two
or more competing species in such model apparently hides the resources
dynamics effects in competition outcome. Therefore, recent works have
proposed models taken account chaotic fluid motion or water levels varia-
tions, spatio-temporal heterogeneity interaction with species to resolve the
paradox [10]. These external factors are well known to impact the densities
of resources or heterogeneity and availability.

The aim of this paper is to study the impact of resource level on com-
petition outputs in the overview of the CEP. MacArthur [11, 12, 13, 14, 15]
introduced first the class “consumer-resource models” which incorporate
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explicitly resource consummation in LV species equations.
MacArthur in [16] shows that a new species can compete on community

if only its action of competition minimizes a quadratic function. Also, a
large number of competing species can coexist if the productive environment
and the environmental variations can compromise the CEP. Soon after, May
and MacArthur in [17] tackle niches ecology overlap problem by combining
their quadratic functions.

Nevertheless, P. Chesson in [18] considered both exploitative competi-
tion and interference competition in the model to generalize the MacArthur
[16] results and revealed that the arguments of Roughgarden in [19] and [20]
contrasted May and MacArthur [17] conclusions on community structure.
Specifically, he precises and reinforces MacArthur’s [16] developments in
the understanding and the empirical measurements of LV coefficients that
distinguish timescales of resources and consumers in interaction.

Qualitatively, the MacArthur formulae is related to the Lyapunov func-
tion which guarantied the global stability of the coexistence equilibrium of
the model resource-consumer without necessarily having a biological sig-
nificance. In the literature, there exists a wide variety of competition by
interference which do not lead to a minimized quadratic function form and
the need to develop new models [19, 20, 21]. But, in a largest view of com-
petition modeling subject, some mathematical models including density-
dependent accessibility description are developed in bioreactor, food chain
and prey-predators systems [22, 23, 24, 25, 26, 27, 28, 29, 30, 31].

In this paper, we propose and study a two species competition model
including explicit resource consumption and density-dependent accessibility
in the perspective to keep the effects of resource level variations and usual
parameters relations with biological meaning on the competition outcome.
To shake to simplicity without loss generality, the resource is assumed to be
available in permanent regime and its accessibility rate is density-dependent
of competitive species. A short description of biological parameters, as-
sumptions, model equations and preliminary results such as positive and
bounded solutions are presented in section 2. In section 3, it is given pre-
liminaries results on two species Lotka-Volterra competition model as an
occurrence of the model according to balanced and unbalanced inhibitory
effects of two species intra and inter-specific inferences. The existence and
stability analyses of coexistence and exclusion of one species equilibria of
the model are presented. Thereafter, an application of the general theoret-
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ical results obtained in section 3 in the circumstances of “Balanced” and
“Unbalanced” inhibitory effects conditions is devoted to section 4. Section
5 presents some numerical illustrations of analytical results.

2 The Mathematical Model

We consider two species living together in a area with carrying capac-
ity K and consuming a single limiting resource. From James Mallet [32]
findings the carrying capacity is considered here to depend on habitat con-
ditions. We assume that the growth rate of each population is inhibited
by members both of its own species and of the other species as well as
the accessibility of resource is affected by the presence of the other species.
Also, members of each population are assumed to develop independently
from each other. Let t be a fixed time, we consider the density xi(t) and
xj(t) of individuals of species i and species j respectively and denote by
Z, r′i and sji the amount of available resource, the effective growth rate
per unit of resource consumption of species i and the rate to which the
presence of species j members affects the growth of species i respectively.
In addition, the food accessibility factor of species i constrained by the
presence of members of species j is supposed to be 1/(1 + pjxj(t)) where
the proportion pj is assumed constant. According to their assumptions, we
describe the two species competition consuming a single limiting resource
by the following system of equations.

dxi
dt

=

(
r′iZxi

1 + pjxj

)
− siix2i − sijxixj ,

dxj
dt

=

(
r′jZxj

1 + pixi

)
− sjjx2j − sjixixj ,

(1)

For simplicity and without loss generality, the following model is considered
throughout this paper

dxi
dt

=

(
r′iZxi
1 + xj

)
− siix2i − sijxixj ,

dxj
dt

=

(
r′jZxj

1 + xi

)
− sjjx2j − sjixixj ,

(2)
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with initial conditions xi(0) = x0i ≥ 0 and xj(0) = x0j ≥ 0.
This model parameters and variables definitions are listed in table 1.

In addition, we assume for parameters that r′i > 0, r′j > 0, sii > 0, sjj > 0,

sji > 0, sij > 0, K > 0, 0 ≤ Z <
s

r
K and s = min{sii, sjj , sji, sij},

r = max{r′i, r′j} and consider the domain of biological interest.

Ω = {(x, y) ∈ R2
+, x+ y ≤ K}.

The well-posedness of the model (2) is then given by the next theorem.

Theorem 2.1. Assuming that the initial conditions lie in Ω, the system of
equations for two competitive species consuming a single limiting resource
model (2) has a unique solution that exists and remains in Ω for all time
t ≥ 0.

Proof. The right-hand side of Equation (2) is continuous with continuous
partial derivatives in Ω, so the system of equation (2) has a unique solution.

We now show that Ω is forward-invariant. If xi = 0 then
dxi
dt

= 0 and the

system (2) is reduce to one species j equation:

dxj
dt

= r′jZxj

(
1− sjj

rjZ
xj

)
(3)

It’s known that (xj-axis) is invariant such that
dxj
dt > 0 if only if xj > Kj

when Z > 0. If xi + xj = K then

dxi
dt

+
dxj
dt

=
r′ixiZ

1 + xj
+
r′jxjZ

1 + xi

− siix2i − sjjx2j − sjixixj − sijxixj .

This implies

dxi
dt

+
dxj
dt
≤ r′ixiZ

1 + xj
+
r′jxjZ

1 + xi
− sx2i − sx2j − 2sxixj

from the assumption s = min{sii, sjj , sji, sij}. So, it results that

dxi
dt

+
dxj
dt
≤ K(rZ − sK) < 0

from hypothesis 0 < Z <
s

r
K and r = max{r′i, r′j}. Therefore, none of the

orbits can leave Ω and a unique solution exists for all time t ≥ 0.
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Table 1: Biological meanings of parameters used in the system (1) and their units.

Parameters Descriptions units

t date (t) (time)

Z density of resource R(resource)

xi density of the species i over time B(biomass)

r′i Consumption rate per unit of resource (tR)−1

sii nuisance of the species i on itself per unit of
time and biomass

(tB)−1

sij nuisance of the species j on species i per unit
of time and biomass

(tB)−1

pi fraction of species j affecting resource acces-
sibility of an individual of species i

percent

The first part of this proof see equation (3) provides the following useful
remark.

Remark 2.1. As it was found for the Lotka-Volterra system (4), it states
that in the absence of one species the system (2) is reduced to the logistic
equation describing the living species when the limiting resource is available
and accessible for its species. For instance, if xi = 0 the system (2) is
reduced (3) with rj = r′jZ as growth rate and Kjj = r′jZ/sjj as its limit
growth when Z > 0.

3 Mathematical analysis

In this section, we determine the model (2) equilibria and study their
local and global asymptotic stability.

3.1 Lotka-Volterra-MacArthur model outcomes: Competitive
effects relations

In the literature, two competitive species models outcomes are consid-
ered in the sense of asymptotic behaviors of the system under study. Par-
ticularly, the developments in this subsection recall and focus on existing
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equilibria asymptotic stability results according to usual relations between
parameters of the model with biological sense.

The following types of equilibria have been intensively studied:

• E0 = (0, 0) called the extinction equilibrium where both species pop-
ulations are extinct: xi = xj = 0.

• Ei = (Kii, 0) called the exclusion of species j equilibrium where
species j population is excluded: xi > 0 and xj = 0.

• Ej = (0,Kjj) called the exclusion of species i equilibrium where
species i population is excluded: xi = 0 and xj > 0.

• E∗ = (x∗i , x
∗
j ) called a coexistence equilibrium, where both species

populations survive: x∗i > 0 and x∗j > 0.

Note that in the pi → 0, pj → 0 limits,
ri = r′iZ > 0 and rj = r′jZ > 0 the model (1) is reduced to the classic
Lotka-volterra competition model in [3].{

ẋi = xi(ri − siixi − sijxj)
ẋj = xj(rj − sjixi − sjjxj)

(4)

In this case, the trivial equilibria E0, Ei, and Ej always exist. But, as it’s
well known, the coexistence equilibrium existence and equilibria stability
of the system (4) depend on relations between expressions tkl = skl/rk,
(k, l ∈ {i, j}) defined as the competitive effect of species l on species k
relative to the growth rate of species k. Under these notations, the following
four distinguishable cases were often considered:

(a) tii > tji and tij < tjj

(b) tii < tji and tij < tjj

(c) tii > tji and tij > tjj

(d) tii < tji and tij > tjj

Some of these conditions, for instance (b), are known to hide an helpful sup-
plementary condition (underlining by Renshaw in [33]) that is the product
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of the within species inhibitory growth rates equals the product of the
between-species inhibitory growth rates, i.e.,

tiitjj = tijtji. (5)

Under only this additional condition (5), the system (4) can be rewritten
in the following form{

ẋi = xi[ri − sii(xi + qxj)]

ẋj = xj [rj − sji(xi + qxj)]
(6)

where the constant q (q = sij/sii = sjj/sji) can describe the population
of species j make smaller demands on available resources when q < 1 and
otherwise q > 1. From this system (6), three distinguishable biological
behaviors are shown in [33] for any initial condition (x0i, x0j):

• If Kii > Kjj , then lim
t→+∞

xj(t) = 0, i.e, the species i wins the compe-

tition.

• If Kii < Kjj , then lim
t→+∞

xi(t) = 0, i.e, the species j wins the compe-

tition.

• If Kii = Kjj , then neither lim
t→+∞

xj(t) = 0 nor lim
t→+∞

xi(t) = 0, i.e,

the two species coexist.

Moreover, it stated in [3] that:

• if case (a) holds then the two species coexist;

• if case (b) holds then species i wins the competition;

• if case (c) holds then species j wins the competition;

• if case (d) holds the species i or j wins the competition with basin of
attraction separated by the stable manifold of the coexistence equi-
librium.

Throughout this work, the condition (5) is called “balanced intra-interspe-
cific competition effects” condition as well as when it is not considered the
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term “balanced” is replaced by the word “unbalanced”. So, there are two
distinct “unbalanced intra-interspecific competition effects” conditions:

tiitjj > tijtji, (7)

and
tiitjj < tijtji. (8)

According to expressions of competitive effects relatively to growth rate,
notice that when Z > 0, the difference between rk and r′k is displayed in
the conditions (5), (7) and (8) as well as in the cases (a), (b), (c) and
(d). In addition, two species Lotka-Volterra competition model (4) and its
MacArthur Model [14] equivalent form that suppose unrestrained resource
accessibility for each species:{

ẋi = r′iZxi(1− tiixi − tijxj)
ẋj = r′jZxj(1− tjixi − tjjxj),

(9)

have the same conclusions (see e.g [3, 4]).
In the further pursuit of theoretical and numerical studies of the model

(2), we consider the definitions, the relations and the notations introduced
in this current subsection. Moreover, we will use, for convenience, the ab-
breviations (LAS) for Locally Asymptotically Stable equilibria (U) for Un-
stable equilibria and (GAS) for Globally Asymptotically Stable equilibria
in all the following.

3.2 General properties of the model

In this subsection, we consider unavailable and available of the limiting
resource conditions to study the general properties of the model (2).

Theorem 3.1. If Z = 0 then the system (2) admits an unique equilibrium
point E0 = (0, 0) which is globally asymptotically stable. Else, for any Z > 0
the extinction equilibrium E0 = (0, 0) is a repeller point of the system (2).

Proof. First, if Z = 0 then E0 = (0, 0) is the only equilibrium point of the
system (2). To show its global asymptotic stability, let V : R2

+ −→ R+ the
lyapunov function defined by V (xi, xj) = xi + xj . V is obviously C1(R2

+)
and satisfies the following conditions:
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V (0, 0) = 0, ∀(xi, xj) 6= (0, 0),
V (xi, xj) > 0,

V̇ (xi, xj) = ẋi + ẋj < 0 and
V (xi, xj) −→∞ as ‖(xi, xj)‖ −→ ∞.

Thus, by Barbashin & Krasovskii [34], the origin is globally asymptotically
stable for the system (2).

Second, let’s suppose Z > 0, then the Jacobian Matrix of the system
(2) at any point (xi, xj) ∈ Ω is

J(xi, xj) =

j1(xi, xj) j3(xi, xj)

j4(xi, xj) j2(xi, xj)

 (10)

where

j1(xi, xj) =
riZ

1 + xj
− 2siixi − sijxj ,

j3(xi, xj) = − riZxi
(1 + xj)2

− sijxi,

j4(xi, xj) = − rjZxj
(1 + xi)2

− sjixj and

j2(xi, xj) =
rjZ

1 + xi
− 2sjjxj − sjixi.

Particularly, the Jacobian matrix (10) at E0 has two positive eigenvalues
riZ > 0 and rjZ > 0. Therefore, E0 is an unstable and repeller point for
the system (2).

Remark 3.1. The results of the theorem 3.1 corresponds to two species
extinction scenario in the absence of resource (Z = 0) while the presence
(Z > 0) of accessible limiting resource leads to competitive exclusion prin-
ciple or coexistence of two species outcome.

Now, since the asymptotic behavior of the model is summarized in the-
orem 3.1 when Z = 0, it is then supposed throughout in the rest of this
paper that two species live both at the beginning of the experiment and
consume permanent limiting resource (Z > 0) thereafter.
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Lemma 3.1. Let Z > 0 and Ks = max
k,l∈{i,j}

{
rkZ

skl

}
. Then the set:

Ωs = {(xi, xj) ∈ R2
+; xi + xj ≤ Ks}

is a global attractor for the system (2). Moreover, the extinction Equilib-
rium E0 = (0, 0), the exclusion of one species equilibria Ei = (Kii, 0) and
Ej = (0,Kjj) exist and lie all in Ωs

Proof. It’s obvious that Ωs is a compact set and invariant for the system
(2) by the main ideas developed in the proof of the Theorem 2.1. Thus, it
remains to show that Ωs attracts any neighboring trajectory starting in Ω.

Let P = (xi, xj) ∈ Ω so that xi + xj > Ks, i.e, 1− xi + xj
Ks

< 0. Therefore,

from the inequalities

dxi
dt
≤ riZxi

(
1− xi

Kii
− xj
Kij

)
≤ riZxi

(
1− xi + xj

Ks

)
< 0

and similarly for xj , it results
dxi
dt

+
dxj
dt

< 0. By setting ẋi = 0 and xj = 0,

we have xi =
riZ

sii
, i.e, Ei is an equilibrium point for (2). This completes

the proof.

Lemma 3.2. There is no periodic orbit for the system (2) lying entirely in
the interior of Ω.

Proof. Consider for any point P = (xi, xj) in the interior of the bounded

set Ω, the functions B(xi, xj) =
1

xixj
and

f(xi, xj) =

riZ
(

1

1 + xj

)
xi − siix2i − sijxixj ,

rjZ

(
1

1 + xi

)
xj − sjjx2j − sjixixj

 .

Then, by calculation, one obtains the divergence of Bf :

div(Bf(xi, xj)) = −
(
sii
xj

+
sjj
xi

)
< 0.

Hence, by Lemma 3.1 and Dulac criteria (see [35]), there can be no closed
orbit entirely in the interior of Ω. This ends the proof.
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The above Lemma 3.2 will be used in the proof of our global asymptotic
stability result of exclusion or coexistence equilibrium.

3.3 Coexistence equilibrium point

It’s obvious that a so called equilibrium of coexistence E∗ = (x∗i , x
∗
j )

(x∗i > 0 and x∗j > 0) of the system (2) satisfies the following system of
equations 

riZ

1 + x∗j
− siix∗i − sijx∗j = 0,

rjZ

1 + x∗i
− sjjx∗j − sjix∗i = 0.

(11)

Then, after little algebra from (11), a useful necessary condition for being
a coexistence equilibrium E∗ states in the following Lemma.

Lemma 3.3. Let Z > 0. If E∗ = (x∗i , x
∗
j ) is a coexistence equilibrium then

these coordinates (x∗i , x
∗
j ) satisfy the following set of equations:

a4(x
∗
i )

4 + a3(x
∗
i )

3 + a2(x
∗
i )

2 + a1x
∗
i + a0 = 0, (12)

a′4(x
∗
j )

4 + a′3(x
∗
j )

3 + a′2(x
∗
j )

2 + a′1x
∗
j + a′0 = 0, (13)

where

• a4 = sjiαc, a
′
4 = −sijαc with αc = siisjj − sjisij,

• a3 = (2sji − sjj)αc, a′3 = −(2sij − sii)αc

• a2 = eiZ + (−2sjj − r′jZ + sji)αc,
a′2 = e′iZ − (−2sii − r′iZ + sij)αc
where ei = s2jjr

′
i + sjisijr

′
j > 0 and e′i = s2iir

′
j + sijsjir

′
i > 0,

• a1 = eiZ − (sjj + r′jZ)αc + diZ,
a′1 = e′iZ + (sii + r′iZ)αc + d′iZ
where di = sijr

′
j
2Zci and d′i = sjir

′
i
2Zcj

• a0 = sijr
′
j
2(Zci − Z)Z, a′0 = sjir

′
i
2(Zcj − Z)Z

with Zci =
sii
r′i

(
tii
tji
− 1

)
and Zcj =

sjj
r′j

(
tjj
tij
− 1

)
.
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Proof. See Appendix A.

Remark 3.2. Since the polynomial coefficients a4 and a′4 are opposite sign
as well as a3 and a′3 do, the study of the corresponding Polynomial’s roots
may be equivalent.

For analytical pursuit of coexistence equilibrium studies, the system
(11) can be rewritten as{

0 = xi(φi(xi)− fi(xj))
0 = xj(φj(xj)− fj(xi))

(14)

where for k, l ∈ {i, j}

φk(τ) = rk

(
1− τ

Kkk

)
, fk(τ) = rk

(
1− 1

1 + τ
+

τ

Kkl

)
with rk = r′kZ, ∀k 6= l.

In the system (14), φk : [0; +∞[→] − ∞; rk] is continuous, straight
line, decreasing and invertible function satisfying φk(0) = rk, φk(Kkk) = 0,

φk(τ) ≥ 0 iff τ ≤ Kkk and ∀α ≤ rk, φ−1k (α) = Kkk

(
1− α

rk

)
.

Moreover, fk : [0,+∞[→ [0,+∞[ is continuous, increasing, concave
(f ′′k (τ) < 0, ∀τ ≥ 0) and invertible function. Therefore, the system (14)
becomes {

xi = gi(xj)

xi = gj(xj)
(15)

where

gi = φ−1i ◦ fi : [0, xmax
j ]→ [0,Kii] and

gj = f−1j ◦ φj : [0,Kjj ]→ [0, rj ]
(16)

are both convex, strictly decreasing and continuous functions.
The properties of these functions (16) will be useful in the study of

coexistence equilibrium point. For instance, it will be used in the proof of
the following lemma which gives upper bounds of E∗’s coordinates.
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Lemma 3.4. Let Z > 0. A necessary condition for E∗ = (x∗i , x
∗
j ) being a

coexistence equilibrium of the system (2) is that

(x∗i , x
∗
j ) ∈]0,min(Kii, x

max
i )[×]0,min(Kjj , x

max
j )[

where

xmax
i =

−1 +
√

1 + 4Kji

2
(17)

and

xmax
j =

−1 +
√

1 + 4Kij

2
. (18)

Proof. Let Z > 0. Since gi is continuous, strictly decreasing and gi(0)gi(K)
< 0, there exists an unique xmax

j ∈]0,K[ solution of gi(τ) = 0, equivalently,
fi(x

max
j ) = ri. By solving this last equation, one can obtain:

xmax
j =

−1 +
√

1 + 4Kij

2

and thereafter
gi : [0, xmax

j ]→ [0,Kii]

is invertible since
φi : [0,Kii]→ [0, ri]

is positive and invertible. But, the coordinates of a coexistence equilibrium
E∗ = (x∗i , x

∗
j ) must be the solution of (15), i.e, x∗i = gi(x

∗
j ) with x∗i > 0

and x∗j > 0. Therefore, since gi : [0;xmax
j ]→ [0;Kii] is invertible, it results

that x∗j = g−1i (x∗i ) ∈]0,min(Kjj , x
max
j )[.

In the same manner, we obtain x∗i ∈]0,min(Kii, x
max
i )[. This completes

this proof.

As it’s well known, an intersection of nullclines curves in the interior
of the domain Ω represents a coexistence equilibrium existence and one
species exclusion equilibrium Ei or Ej is represented by the intersection
point between a nullclines curves (11) and (xi − axis) or (xj − axis), the
nullclines properties give typical situations as it is depicted in Figure 1 and
Figure 2.
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Figure 1: (a) and (b): none coexistence steady state, (c) and (d): one coexistence
steady state E∗ according to resource and competition effects.

Figure 2: (e) and (f): one coexistence equilibrium E∗, (g) and (h);: two coexistence
equilibria E∗ and E∗∗ according to resource and competition effects.
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3.4 Local asymptotic stability of equilibria

In this subsection, we study the local stability of model (2) equilibria.

3.4.1 Exclusion of one species equilibria

Proposition 3.1. Let Z > 0. If tii ≤ tji then Ei is LAS. Else, the following
assertions holds:

(i) If t2ii ≥ tji(tii +
s

r
K) then Ei is unstable;

(ii) If t2ii < tji(tii +
s

r
K) then there exists Zci > 0 so that Ei is LAS for

the system (2) if Z ≥ Zci else Ei is unstable.

Moreover, when Ei is unstable it holds that

• its unstable subspace: (Eui ) : xj = β(Z)xi +
λi2 − λi1
sij(Kij+1)

where β(Z) = − λi2 − λi1
sij(Kij + 1)Kii

< 0, cross the domain Ω

• and its stable subspace (Esi ) is the (xi − axis).

Proof. Let Z > 0. Note that first, the eigenvalues of Jacobian matrix at Ei

Appendix (B.36) are λi1 = −riZ < 0 and λi2 =
sjiriKii

sii(1 +Kii)
(Zci − Z). So,

v = xi(1, 0) is a eigenvector associate to λi1 < 0. It follows (xi − axis) is
the stable subspace of the exclusion equilibrium Ei.

For the eigenvalue λi2, if tii ≤ tji then λi2 < 0. This implies Ei is LAS
for the system (2). Else, i.e, tii > tji (Zci > 0), one can be pursuit the
following additional hypotheses.

(i) If t2ii ≥ tji

(
tii +

s

r
K
)

then λi2 > 0. By H. Grobman Theorem [39],

Ei is then unstable for the system (2). Moreover, it’s clear that λi2 > 0
provides the equation (Eui ) of the subspace unstable associated to λi2 > 0.

(ii) It’s obvious that if t2ii < tji

(
tii +

s

r
K
)

then it remains the case

Z = Zci > 0 to conclude for the hypothesis (ii).
Now, suppose that Z = Zci > 0. This implies λi2 = 0. By setting

xi = xi −Kii and xj = xj , it’s clear that the origin is a equilibrium point
of the following system:

Biomath Communications 8 (2021), 2112171, 10.11145/bmc.2021.12.171 16/44

https://doi.org/10.11145/bmc.2021.12.171



dxi
dt

=

(
riZ

1 + xj

)
(xi +Kii)− sii(xi +Kii)

2 − sij(xi +Kii)xj ,

dxj
dt

=

(
rjZ

1 + xi +Kii

)
xj − sjjx2j − sji(xi +Kii)xj .

(19)

From the jacobian matrix Appendix (B.39) of system (19) at origin, we give
the two eigenvectors vi = (1, 0), vj = (−γ, 1), and the following matrix

P−1 =

(
1 γ
0 1

)
. (20)

Setting (
X
Y

)
= P−1

(
xi
xj

)
, (21)

with γ =
sij
sii

(Kij + 1), we obtain:



Ẋ = −2riZX − siiX2 + ψ1Y + ψ2Y
2 + ψ3XY − siiK2

ii

+
riZ(Kii +X − γY )

1 + Y
+

rjZγY

1 +Kii +X − γY

Ẏ = −sjiKiiY + (sjiγ − sjj)Y 2 − sjiXY +
rjZY

1 +Kii +X − γY
.

(22)

where X − γY = xi ≥ 0,

ψ1 = (2siiγ − sij − sjiγ)Kii,

ψ2 = (sij − sii − sjj)γ,
ψ3 = 2siiγ − sij − sjiγ.

This system (22) can be rewritten in this useful form:

V̇ = AV +Q(V ) + o(||(X,Y )||)

with V =

(
X
Y

)
, Q(V ) =

(
F (V )
G(V )

)
where A =

(
−riZ ψ1

0 −sjiKii

)
,

G(X,Y ) = (sjiγ − sjj)Y 2 − sjiXY
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and
F (X,Y ) = −siiX2 + ψ2Y

2 + ψ3XY

with Q(0, 0) = (0, 0) and JQ(0, 0) =

(
0 0
0 0

)
where JQ denotes the jaco-

bian matrix of Q Appendix (B.37).
Thus, since the matrix A has negatives eigenvalues then Ei is LAS for

the system (2). This ends the proof.

Remark 3.3. Changing i and j roles in Proposition. 3.1, it can be obtain
similarly results for the exclusion equilibrium state Ej as a corollary.

These results will be useful for proving the global asymptotic stability
of equilibria in section 4.

3.4.2 Coexistence equilibrium E∗

Let Z > 0 so that a coexistence equilibrium point E∗ exists, it derives
that the trace and the determinant of the Jacobian matrix of the system
(2) at E∗ (see Appendix (B.38)) can be expressed as

Trace(J(E∗)) = −(siix
∗
i + sjjx

∗
j ) < 0. (23)

and

det(J(E∗)) =
x∗ix

∗
j (1 + x∗i + x∗j )

(1 + x∗i )(1 + x∗j )

[
αc − αz(E∗)

]
(24)

respectively, where
αc = r′ir

′
j(tiitjj − tijtji) (25)

and

αz(E
∗) =

f(x∗i , x
∗
j )

1 + x∗i + x∗j
(26)

with

f(x∗i , x
∗
j ) = 2siisji(x

∗
i )

2 + 2sjjsij(x
∗
j )

2

+ sji(sii + sij)x
∗
i + sij(sjj + sji)x

∗
j + 4sijsjix

∗
ix
∗
j .

These expressions (23), (24), (25) and (26) obviously allow to give the
behavior of the system (2) neighborhood of E∗ in the following Proposition.
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Table 2: Notations of some Hypotheses.

Notations Conditions

Bi tii ≤ tji
Bj tjj ≤ tij
Ai t2ii < tji(tii +

s

r
K)

Aj t2jj < tij(tjj +
s

r
K)

Ẑ max
k∈{i,j}

{Zck}

Ž min
k∈{i,j}

{Zck}

Proposition 3.2 (Coexistence of species). Let Z > 0 so that a coexistence
equilibrium point E∗ exists. Then, the following assertions hold for the
system (2).

(i) If αc ≤ 0 then E∗ is unstable.

(ii) For any αc > 0, if αz(E
∗) < αc then E∗ is LAS. Else, if αz(E

∗) = αc
then E∗ is stable, else E∗ is unstable.

(iii) if E∗ is unstable then it admits a stable manifold lying in the interior
of Ω.

For simplicity, we will use the notations of conditions given in table 2
in the following sections.

4 Asymptotic Behaviors: Resource Based Model Outcome

In this section, we consider that Z > 0 and determine the local and
global asymptotic stability of system (2) equilibria that exists. For this
purpose, we will use the following auxiliary function

g : [0,min(Kjj , x
max
j )]→ R

defined by
g(x) = gi(x)− gj(x). (27)

Biomath Communications 8 (2021), 2112171, 10.11145/bmc.2021.12.171 19/44

https://doi.org/10.11145/bmc.2021.12.171


4.1 Balanced intra-inter specific competition effects

In this subsection, we assume that the condition (5) is satisfied, i.e.,
tiitjj = tijtji. This condition is equivalent to αc = 0 (cf. (25)) and implies
that the condition Bi is equivalent to Bj . In addition, the system (11)
becomes a2(x

∗
i )

2 + a1x
∗
i + a0 = 0,

rjZ

sjj(1 + x∗i )
− sji
sjj

x∗i = x∗j ,
(28)

where a2 = eiZ > 0, a1 = (ei + di)Z and a0 = sijr
2
j (Zci − Z)Z with di =

sijr
2
jZci .
Therefore, the x∗i -Equation in (28) admits at most one positive root

given by

x∗i =
−a1 +

√
a21 − 4a2a0

2a2
if and only if a0 < 0.

This equivalence will be useful in the proof of following theorems.

Theorem 4.1. Suppose that the conditions Bi and Ai are satisfied. Then
for the system (2), there exists a bifurcation value Ẑ > 0 of the resource Z
such that:

(i) for any Z > Ẑ, there exists a unique coexistence equilibrium E∗ which
is unstable with the stable manifold is in interior of Ω and the two
exclusion of one species equilibria Ei and Ej are both LAS.

(ii) for any Z ≤ Ẑ, there is no coexistence equilibrium, Ei is unstable and
Ej is LAS.

Proof. Let Bi and Ai are satisfied. Notice that from Bi we have Zci > 0
and Bj . Furthermore, Ai implies Zci < Zmax.

(i) Suppose that Z > Zci . This means a0 < 0, then there exists at most
one E∗. From Bi and (27) it holds that g(0) = Kii − xmax

i > 0. But, by
calculation, we have both g(xmax

j ) = −gj(xmax
j ) < 0 and Bj implies that

xmax
j ≤ Kjj . In addition, according to g : [0;xmax

j ] → R is continuous,
there exists x∗j ∈]0, xmax

j [ such that g(x∗j ) = 0 when Z > Zci . Thus, E∗

exists and is unique. The results in Lemma 3.3 and 3.4 complete the proof
of this assertion (i).

(ii) If Z ≤ Zci then a0 ≥ 0. Therefore, there exists no coexistence
equilibrium E∗ in Ω. This completes the proof.
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Table 3: Existence and local stability of steady states according to Bi, Bj , Ai, Ẑ
and Ž are defined in the table 2.

Conditions Ei Ej E∗

BiAi(Z < Ẑ) U LAS

BiAi(Z = Ẑ) LAS LAS

BiAi(Z > Ẑ) LAS LAS U

BiAi U LAS

Table 4: Existence and local stability of steady states according to Bi, Bj , Ai, Ẑ
and Ž are defined in the table 2.

Conditions Ei Ej E∗

BjAi(Z < Ẑ) U LAS

BjAi(Z = Ẑ) LAS LAS

BjAi(Z > Ẑ) LAS LAS U

BjAi U LAS

Table 5: Existence and local stability of steady states according to Bi, Bj , Aj , Ẑ
and Ž are defined in table 2.

Conditions Ei Ej E∗

BiAj(Z < Ẑ) LAS U

BiAj(Z = Ẑ) LAS LAS

BiAj(Z > Ẑ) LAS LAS U

BiAj LAS U

Table 6: Existence and local stability of steady states according to Bi, Bj , Aj , Ẑ
and Ž are defined in table 2.

Conditions Ei Ej E∗

BjAj(Z < Ẑ) LAS U

BjAj(Z = Ẑ) LAS LAS

BjAj(Z > Ẑ) LAS LAS U

BjAj LAS U
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Therefore, from local asymptotic stability of equilibria states of system
(2) summarized in tables 3 to 6, it holds that balanced competition effects
condition gives the CEP.

Lemma 4.1. Suppose that
1

2
sjj < sij satisfying sjj 6= sij. Then

W s(Ei)\{Ei} ⊂ R2\Ω

where W s(Ei) denotes the stable manifold at Ei.

Proof. To determine the stable manifold from Taylor expansion of the sys-
tem (19), we consider: xj = h(xi) where h(xi) = Q3(xi) + o(x4i ), with
Q3(xi) = ax2i + bx3i . Thus, from Q′3(xi) = 2axi + 3bx2i

f(xi, Q3(xi)) =
riZ

1 + ax2i + bx3i
(xi +Kii)

− sii(xi +Kii)
2 − sij(xi +Kii)(ax

2
i + bx3i ),

g(xi, Q3(xi)) =
rjZ

1 + xi +Kii
(ax2i + bx3i )

− sjj(ax2i + bx3i )
2 − sji(xi +Kii)(ax

2
i + bx3i ),

the manifold invariance:

Q′3(xi)f(xi, Q3(xi)) = g(xi, Q3(xi)),

and the hypothesis sjj ∈]0, 2sij [\{sij}, it consecutively holds

−3sijb
3 = −3sjjb

3, b3(sjj − sij) = 0 =⇒ b = 0

and

a2(sjja− 2sija− 2sijKii) = 0 =⇒ a =
2sijKii

sjj − 2sij
< 0.

Thereafter, we obtain the stable manifold at Ei:

(W s(Ei)) : xj = ax2i (a < 0)

is outside of Ω\{Ei} when sjj ∈]0, 2sij [\{sij}. This ends the proof.

Theorem 4.2 (CEP). Suppose Bi, Ai and the assumption of Lemma 4.1
holds. Then there exists a bifurcation value Ž > 0 such that:
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(i) for any Z < Ž, Ej is GAS in Ω\(xi − axis) for the system (2);

(ii) for any Z ≥ Ž, the coexistence equilibrium E∗ is unstable and the two
exclusion equilibria Ei and Ej are both LAS for the system (2).

Proof. (i) Let x0 = (x0i, x0j) be an initial condition inside of Ω. The orbit
θ+(x0) is positively bounded, since the domain Ω is positively invariant.
Thanks to the Poincaré-Bendixson type trichotomy [36], the ω − limit of
x0 contains either:

i1) an equilibrium point or

i2) an closed orbit or

i3) an equilibrium point and a homoclinic orbit of that point or a chain
of unstable points.

If Bi, Ai and Z < Zci then the system (2) admits three hyperbolic points
E0, Ei and Ej . In one hand, applying the Lemma 3.2, it follows that the
system has no periodical orbit. The statement i2) is not then satisfied.

Otherwise, the Lemma 4.1 according ω(x0) 6= {Ei}. Indeed, Ei is a
hyperbolic point thus, by Theorem (Butler-McGehee) in [38] there exists
z 6= Ei such as z ∈ ω(x0) which is absurd because ω(x0) ⊂ Ω. It yields that
Ei is not admissible to be a ω − limit set of an initial condition belonging
to Ω. In other terms, there is no chain of equilibrium points and Ei has no
homoclinic orbit. Besides ,Ej has no homoclinic orbit since it is LAS. The
statement i3) is not satisfied. Consequently ω(x0) = {Ej}.

We have shown that the ω− limit set of x0 contains only Ej equilibrium
which is attractive. We conclude that Ej equilibrium is GAS in Ω\(xi −
axis) for the system (2).

The statement i2) has been verified in the Proof of the Proposition 3.2.
This completes this proof.

Remark 4.1. Under balanced competition effects condition, only the CEP
is valid for the model (2) in two ways. Indeed, in lowest levels of resource,
a exclusion of a species holds when its intra-specific competition effects is
greater than its inter-specific competition effects on the other competing
species. In sufficient level of resource, the exclusion of one species depend
on two species initial densities.
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4.2 Unbalanced intra-inter specific competition effects

Throughout this subsection, we assume that tiitjj − tijtji > 0, this is
equivalent to αc > 0 (cf. (25)). Then, the density x∗i of species i at a
coexistence equilibrium (when it exists) satisfies the equation P (x∗i ) = 0
where

P (x∗i ) = αc(x
∗
i )

4 + a3(x
∗
i )

3 + a2(x
∗
i )

2 + a1x
∗
i + a0

Theorem 4.3. Suppose Bi, Bj, Ai and Aj holds. Then for the system (2)
there exist two bifurcation values, Ž and Ẑ, of the resource Z that are both
positives such that:

(i) for any Z ≤ Ž or Z ≥ Ẑ, the system (2) admits a unique coexistence
equilibrium in interior of Ω.

(ii) for any Ž < Z < Ẑ, the system (2) admits at most two coexistence
equilibria in the interior of Ω.

Moreover, the local asymptotic behavior of E∗ or E∗∗ is given by assertion
(ii) in Proposition 3.2.

Proof. Notice that from Bi and Bj , we have Zci and Zcj are both positive.
Furthermore, Ai and Aj implies Zci < Zmax and Zcj < Zmax respectively.

(i) Suppose that Z < Ž. This means Kkk < xmax
k ,∀k ∈ {i, j} which

implies:
g(0) = gi(0)− gj(0) = Kii − xmax

i < 0.

But, g(Kjj) = gi(Kjj)−gj(Kjj) = gi(Kjj) > 0. Then, from g : [0,Kjj ] −→
R is continuous so that g(0)g(Kjj) < 0, there exists x∗j ∈]0,Kjj [ such

as g(x∗j ) = 0. Consider x∗
′
j ∈]x∗j ,Kjj [ such as g(x∗

′
j ) = 0. Then, there

exists ε > 0 so that g(x∗
′
j − ε) > 0 and g(x∗

′
j + ε) < 0. Therefore, by

the intermediate value theorem, there exists x∗
′′
j ∈]x∗

′
j + ε,Kjj [ satisfying

g(xj) = 0. So, from a0/a4 > 0, the polynomial P (x) (12) admits fourth
positive roots. Using Descartes criteria (see Appendix C), this obvious
contradicts sign of P (x) coefficients when Z < Ž. Thus, the system (2)
admits an unique equilibrium when Z < Ž.

In the same manner, contradiction of P ′(x) (13) coefficients sign holds
for any Z > Ẑ. Thus E∗ exists and is unique for the system (2) for Z < Ž
or Z > Ẑ. The results in Lemma 3.3 and Lemma 3.4 complete this proof
of assertion (i).
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Table 7: Existence and local stability of steady states according to Bi, Ai, Ž = Zcj

and Ẑ = Zci which are defined in the table 2 when αc < αz(E∗) and αc < αz(E∗∗).

Conditions Ei Ej E∗ E∗∗

Bi(Ž < 0 < Z < Ẑ) U LAS

BiAi(Ž < 0 < Ẑ ≤ Z) LAS LAS U

Bi(0 < Z < Ž) U U U

Bi(0 < Z = Ž) U LAS U

BiAi(0 < Ž < Z < Ẑ) U LAS U U

Table 8: Existence and local stability of steady states according to Bi, Ai, Ž = Zcj

and Ẑ = Zci which are defined in table 2 when αc > αz(E∗) and αc > αz(E∗∗).

Conditions Ei Ej E∗ E∗∗

Bi(Ž < 0 < Z < Ẑ) U LAS

BiAi(Ž < 0 < Ẑ ≤ Z) LAS LAS LAS

Bi(0 < Z < Ž) U U LAS

Bi(0 < Z = Ž) U LAS LAS

BiAi(0 < Ž < Z < Ẑ) U LAS LAS LAS

(ii) Without loss generality, set Ž = Zci and suppose that Zci < Z <
Zcj . This means xmax

j − Kjj < 0 and xmax
i − Kii > 0. By calculation,

g(0) = Kii−xmax
i < 0 and g(xmax

j ) = −gj(xmax
j ) < 0. If for any γ ∈]0;xmax

j [
g(γ) < 0, then there is no coexistence equilibrium for the system (2).

Else, suppose that there exists γ0 ∈]0;xmax
j [ /g(γ0) = 0 and g(γ) <

0, ∀ γ 6= γ0. Then, the system (2) admits a unique coexistence equilibrium.
Finally, when it exists γ1 ∈]0;xmax

j [ so that g(γ1) > 0. Applying twice the
intermediate value theorem, there exist two points x∗j ∈]0, γ1[ and x∗∗j ∈
]γ1, x

max
j [ solutions of g(τ) = 0. Combining the necessary conditions in

Lemma 3.3, relations between roots and Descartes criteria (see Appendix
C) it follows that only E∗ and E∗∗ exist for the system (2). This completes
the proof of assertion (ii).

Therefore, the conclusions on local asymptotic stability of equilibria of
system (2) when unbalanced competition effects hypotheses is supposed,
are summarized in tables 7 to 11.
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Table 9: Existence and local stability of steady states according to conditions
Bj , Aj , Ž = Zci and Ẑ = Zcj which are defined in table 2 αc < αz(E∗) and
αc < αz(E∗∗).

Conditions Ei Ej E∗ E∗∗

Bj(Ž < 0 < Z < Ẑ) LAS U

BjAj(Ž < 0 < Ẑ ≤ Z) LAS LAS U

Bj(0 < Z < Ž) U U U

Bj(Z = Ž > 0) LAS U U

BjAj(0 < Ž < Z < Ẑ) LAS U U U

BjAj(Ž < 0 < Z) LAS U

Table 10: Existence and local stability of steady states according to Bj , Aj , Ž =

Zci and Ẑ = Zcj which are defined in table 2 αc > αz(E∗) and αc > αz(E∗∗).

Conditions Ei Ej E∗ E∗∗

Bj(Ž < 0 < Z < Ẑ) LAS U

BjAj(Ž < 0 < Ẑ ≤ Z) LAS LAS LAS

Bj(0 < Z < Ž) U U LAS

Bj(Z = Ž > 0) LAS U LAS

BjAj(0 < Ž < Z < Ẑ) LAS U LAS LAS

BjAj(Ž < 0 < Z) LAS U

Table 11: Existence and local stability of steady states according to Bj , Aj , Ž =

Zci and Ẑ = Zcj are defined in table 2 αc < αz(E∗) and αc > αz(E∗∗).

Conditions Ei Ej E∗ E∗∗

Bj(Ž < 0 < Z < Ẑ) LAS U

BjAj(Ž < 0 < Ẑ ≤ Z) LAS LAS U

Bj(0 < Z < Ž) U U U

Bj(Z = Ž > 0) LAS U U

BjAj(0 < Ž < Z < Ẑ) LAS U U LAS

BjAj(Ž < 0 < Z) LAS U
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Table 12: Some parameters and their values.

Parameters ri rj K

Values 0.04 0.03 1000

The following theorem gives a result on global asymptotic stability of
the coexistence equilibrium.

Theorem 4.4 (Paradox of phytoplankton). Suppose Bi, Bj,
1

2
sll < slk ∀l 6=

k ∈ {i, j} and Z < Ž are satisfied. Then there exists a bifurcation value αc
such that:

(i) for any αz(E
∗) < αc, the unique coexistence equilibrium E∗ is GAS

in Ω\(xi − axis) ∪ (xj − axis) for the system (2).

(ii) for any αz(E
∗) > αc, although the coexistence equilibrium point is

unstable, the system (2) is persistent.

Proof. Suppose Bi, Bj and Z < Ž then the exclusion equilibria are un-

stable. Furthermore,
1

2
sll < slk, ∀l 6= k ∈ {i, j} implies that the stable

manifold at each exclusion equilibrium satisfies W s(Ek)\{Ek} ⊂ R2\Ω.
(i) In same manner that we shown in the Proof of Theorem 4.2 the

ω− limit set of any initial condition x0 contains only E∗ equilibrium which
is attractive. We conclude that E∗ equilibrium is GAS in Ω\(xi − axis) ∪
(xj − axis) for the system (2). The statement of (ii) has been verified in
the proof of the Proposition 3.2.

5 Numerical simulations

In this section, we present some numerical simulations of the model (2)
that collaborate the theoretical results obtained in the previous sections.
They concern numeric solutions of equations derived from the model (2) by
using the software Matlab R2015a. The parameters values defined in the
table 12 and those satisfying conditions and hypotheses are used to show
graphical results.

Using the routine fsolve of Matlab in the program AbasinMacArthur2.m
(available under request from the authors), the Figure 3 shows the attrac-
tion basin of each exclusion equilibrium point when condition of Balanced
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Figure 3: Illustration of the attraction basins of Ei (yellow color) and Ej (grey
color) separated by the stable manifold of E∗ (W s(E∗) ⊂ Ω) corresponding to
the case that Ei and Ej are LAS when E∗ is unstable for the model (2) with the
parameters values αc = 0, sii = 1

3 , sjj = 1
2 , sij = 1

3 , sji = 1
2 , Z = 200 and those

in the table 12.

Figure 4: Illustration of the unique coexistence equilibrium is unstable under Bal-
anced competition effects condition (αc = 0) when tjj ≤ tij and tii > tji by

plotting the function Z 7→ αZ(E∗) (blue color)and αc (red color) for Z > Ẑ with
the same parameters values which give Figure 3.

Biomath Communications 8 (2021), 2112171, 10.11145/bmc.2021.12.171 28/44

https://doi.org/10.11145/bmc.2021.12.171


Figure 5: Populations xi and xj trajectories from initial conditions: (xi0, xj0) =
(0.2, 0.2); (0.4, 0.4); (0.16, 0.16); (0.55, 0.55); (0.35, 0.35) for αc = 0 with parame-
ters values given in Figure 3 and the resource Z = 1 for (a), (b) and Z = 6 for (c),
(d).
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Figure 6: Populations xi and xj trajectories satisfying balanced competition effects
(αc = 0) and the resource Z = 11 for (e), (f) and Z = 16 for (g),(h) with the same
parameters values and initial conditions given in Figure 5.
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competition effects (αc = 0) is satisfied with Z = 200, tii = 8.3333 >
tji = 16.6667, tjj = 16.6667 > tij = 8.3333. These values provide Zci =
−4.1667 < 0, Ẑ = Zcj = 16.6667 as critic value of resource and the esti-
mations of E∗ = (1.3609, 3.7218), Ei = (24, 0) and Ej = (0, 12) as unique
coexistence, exclusion of species j and exclusion of species i equilibrium
points respectively.

It can be seen in this figure (Figure 3) that the attraction basin of
Ei = (24, 0) (yellow color) and the attraction basin of Ej = (0, 12) (grey
color) are separated here by a surface (white color) of neither stable nor
attractive points instead of the intending curve of the stable manifold at
E∗. Clearly, this indicates that the system (2) converge towards to one
exclusion equilibrium point as time goes to infinity according to the initial
condition.

In addition, for these same parameters values, it can be seen in Figure
4 that the graph of the function Z 7−→ αZ (26) for Z > 16.6667 is above
the graph of the function Z 7−→ αc = 0 i.e the Z-axis. This confirms
that the coexistence equilibrium E∗ = (x∗i (Z), x∗j (Z)) point exits and is
unstable for Z > 16.6667. Also, as it’s depicted in Figure 5 and Figure 6,
the system (2) converges to Ej for many values of the resource Z satisfying
Z < Ẑ. Therefore, this confirms the model (2) suggests the CEP when
the two species in competition for a common resource satisfy the balanced
intra-inter specific competition effects condition as it states in Theorem 4.2.

Considering the case of unbalanced intra-inter specific competition ef-
fects when αc = 106940 > 0 so that tii = 350.0000 > tji = 116.6667,
tjj = 333.3333 > tij = 83.3333. For Z = 800, we obtain Ei = (2.2857, 0),
Ej = (0, 2.4), Ž = Zci = 70 and Ẑ = Zcj = 1000 by calculation and
the numeric resolution of equations (11) gives the existence of the two
coexistence equilibrium points estimated by E∗ = (1.7345, 0.2706) and
E∗∗ = (1.2857, 0.6000). From putting these approximate coordinates of
each coexistence equilibrium point in equation (26), it derives αZ(E∗) =
146.0917 < αc and αZ(E∗∗) = 113.3157 < αc. The evaluations at a long
term in time towards infinity of the solution of equations (2) from any ini-
tial condition x0 ∈ Ωs with Ks = 9.8 falling in a small neighborhood of an
equilibrium point are in Figure 7.

It can be seen only the attraction basins of equilibria Ej = (0, 2.4),
E∗ = (1.7345, 0.2706) and E∗∗ = (1.2857, 0.6000) as it is depicted in Figure
8. This shows that Ei = (2.2857, 0) is unstable as well as Ej = (0, 2.4),
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Figure 7: Illustration of the species i exclusion by the attraction basins of Ej

(yelow), E∗ (black) and E∗∗ (orange) with the parameters values sii = 14, sjj =
10, sij = 10

3 , sji = 7
2 , those in Table. 12 and for resource Z = 800. It indicates that

Ej , E
∗ and E∗∗ are LAS and Ei (white color neighborhood) is unstable according

to initial conditions x0 ∈ Ωs with Ks = 8.9.

E∗ = (1.7345, 0.2706) and E∗∗ = (1.2857, 0.6000) are LAS. For Z = 1500 >
Ẑ, we obtain in the same manner that Ei = (4.2857, 0), Ej = (0, 4.5)
and E∗ = (0.7822, 2.2511) are LAS as it’s depicted in Figure 8 so that
αZ(E∗) = 155.8808 < αc. Considering the case of unbalanced competition
effects when tii = 300.0000 > tji = 100.0000 and tjj = 233.3333 > tij =
58.3333, that provide αc = 6.4167e + 04, Ž = Zci = 600 and Ẑ = Zcj =

700. For Z = 500 < Ž, it’s obtained that Ei = (1.6667, 0) and Ej =
(0, 2.1429) are unstable and the unique coexistence equilibrium point E∗ =
(0.5627, 1.1301) is LAS according to its attraction basin in Figure 9.

From the same parameters values with Z varying, it is depicted in Figure
10 (a) the graphs of both functions (Z 7−→ ||E∗(Z)||1 = x∗i (Z) +x∗j (Z) and
Z 7−→ ||E∗∗(Z)||1 = x∗∗i (Z) + x∗∗j (Z)) that show the existence of zero,
one or two coexistence equilibrium points. It can be seen in Figure 10 (b)
the different positions between the graphs of the functions Z 7−→ αZ(E∗)
(26) and Z 7−→ αZ(E∗∗) (26) for Z > 0 relatively to Z 7−→ αc > 0 that
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Figure 8: Illustration of the tri-stability of the system (2) concerning Ei, Ej

and the unique coexistence equilibrium E∗, obtained with same values parameters
given in figure 7 and the resource value Z = 1500. It shows species exclusion or
coexistence according the initial x0 ∈ Ωs with Ks = 18.

Figure 9: Illustration of assertion (i) of the Theorem 4.4 when the two exclusion
equilibria Ei and Ej are unstable and the unique coexistence equilibrium point E∗

is LAS, obtained with the parameters values sii = 12, sjj = 7, sij = 7
3 , sji = 3

and the resource value Z = 500. It shows species coexistence according the initial
x0 ∈ Ωs with Ks = 8.9.
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(a) (b)

Figure 10: (a): Functions (Z 7−→ x∗i (Z) + x∗j (Z)) and (Z 7−→ x∗∗i (Z) + x∗∗j (Z))
graphs showing the existence of zero, one or two coexistence equilibrium points.
(b) Graphic comparison of functions Z 7−→ αZ(E∗) (26) and Z 7−→ αZ(E∗∗) (26)
relatively to Z 7−→ αc > 0 given the existence of two coexistence equilibrium
points with one is LAS and the other is unstable if Z ∈]Ž; Ẑ[=]600; 700[ and. also
an unique coexistence equilibrium point which is unstable if Z ∈]0; 600[ and is
LAS when Z ∈]700 + ε; 2000[(ε > 0).

Figure 11: Illustration of the persistence of system (2) when any equilibrium
point (Ei, Ej and E∗) is unstable with parameters values sii = 1, sjj =
0.5, sij = 1

3 , sji = 1
2 , the resource Z = 10 and the initial conditions

(0.2, 0.1);(1.4, 1); (1.8, 1.8);(2, 2.1);(2.9, 2.5).
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characterize the stability or the instability of coexistence equilibria points
in the intervals ]0; Ž[, ]Ž; Ẑ[ and ]Ẑ;Zmax[. These numeric results clearly
indicate combination of statements in Proposition 3.2 and Theorem 4.3
as bifurcation diagrams. Considering the case of unbalanced competition
effects when tii = 25.0000, tij = 83.3333, tjj = 16.6667, tji = 16.6667
implies 0 < αc = 0.333 < αZ = 1.3028, Ei = (0.4, 0), Ej = (0, 0.6),
E∗ = (0.2416, 0.2416) and Zmax = 83333, Ž = Zci = 12.5000, Z = 10 <
Zci Ẑ = Zcj = 16.6667, then Ei, Ej and E∗ are unstable. This shows
persistence species.

6 Conclusion

In this work, we have proposed and analyzed a new planar ordinary
differential equations system as an extension of classical Lotka-Volterra
competition model. This concerned the resource effects on two species
coexistence or the exclusion of one of them when a permanent regime of re-
source availability and a density dependent resource acquirement for species
are supposed. The mathematical analysis proved that the key factor of the
competition outcome is the relation between intra and inter specific inter-
ference effects and sometimes the resource level importance. Indeed, it’s
shown that the Lotka-Volterra-MacArthur competition model can derived
as a limit of the built model. The well known conclusions on Lotka-Volterra-
MacArthur competition model according to usual conditions (a)-(d) (see for
instance diagne. et al) are not resource level dependent.

Thereafter, inspired by Lotka-Volterra underlining by Renshaw in [33],
we introduced the hypotheses of balanced (5) and unbalanced (7)-(8) intra
interspecific inferences from formulas that describe intra and inter specific
competition effects between species relatively their rate of growth or rate
of unit resource consummation growth.

The general analysis suggested the extinction of two species when there
is non resource Z in the system. Conversely, when the resource is per-
manent Z > 0, it provided uniqueness and positivity of solution, a global
attractor, properties that characterize a coexistence equilibrium point, the
non existence of limit cycle by Dulac criteria and the LAS of exclusion and
coexistence equilibria by Hartmann Grobman, local manifolds and center
manifold theorems for the system (2). In addition, we proved that the CEP
holds when two species satisfy the Balanced competition effects hypothesis
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whenever when it states the unbalanced competition effects condition, the
model (2) goes to the CEP or the coexistence of species states according to
the level of resource. In both conditions, it was exhibited that equilibrium
points of the model (2) are all unstable. The Poincare-Bendixson Theorem
[36] combined to model (2) obtained here properties is used to show one
exclusion of species equilibrium GAS and coexistence of species equilibrium
GAS.

The modifications of the classic prey-predator model of Lotka proposed
in [31] as well as the epidemiological models proposed in [37] with polyno-
mial factors can also be applied for this model.

Numerical simulations were perform to prove their congruence to the-
oretical results. In addition, it was established that the model can go to
coexistence of species when equilibria are theoretically all unstable.

Finally, the presented model can be view as an important step towards
a more thorough understanding of relationships between interference of
species, resource dynamics and competition outcomes. Future work should
include biogeography and variations of inference effects according to acces-
sible resource dynamics that lead to a switched system or concerns resource
ratio-based theory.

A Proofs

Lemma 3.3. From the system (11), one can have the following system of
equations:

siix
∗
i (1 + x∗j ) = r′iZ − sijx∗j (1 + x∗j ), (A.29)

x∗j =
r′jZ − sjix∗i (1 + x∗i )

sjj(1 + x∗i )
. (A.30)

From putting (A.30) in (A.29) and setting π = r′jZ − sjix∗i (1 + x∗i ) and
ζ = sjj(1 + x∗i ), it holds the following equation:

ζ2ri = (ζ + π)(ζsiix
∗
i + sijπ) = π2 + siix

∗
i ζ

2 + (siix
∗
i + sii)ζπ. (A.31)
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Therefore, from the following little algebra calculations of equation (A.31)
terms

sijπ
2 = sij

(
r2j + s2ji(x

∗
i )

2(1 + x∗i )
2 − 2rjsjix

∗
i (1 + x∗i )

)
= r2j sij − 2rjsijsjix

∗
i + sijs

2
ji(x

∗
i )

4

+ sijsji(sji − 2rj)(x
∗
i )

2 + 2sijs
2
ji(x

∗
i )

3,

siix
∗
i ζ

2 = siix
∗
i

(
s2jj + 2s2jjx

∗
i + s2jj(x

∗
i )

2
)

= siis
2
jjx
∗
i + 2siis

2
jj(x

∗
i )

2 + siis
2
jj(x

∗
i )

3,

ζ2ri = ris
2
jj + 2ris

2
jjx
∗
i + ris

2
jj(x

∗
i )

2,

Π = (siix
∗
i + sij)ζπ

= (siix
∗
i + sij)

(
rjsjj + sjj(rj − sji)x∗i − 2sjjsji(x

∗
i )

2 − sjjsji(x∗i )3
)

= rjsijsjj + sjj(rj(sij + sii)− sijsji)x∗i
+ sjj

(
rj(sii − sji(sii + 2sij)

)
(x∗i )

2

+ sjjsji(sij − 2sii)(x
∗
i )

3 − siisjjsji(x∗i )4,

with rk = r′kZ (k = i, j), it derives the coefficients of the polynomial (12)

a4 = sjiαc with αc = siisjj − sjisij ,
a3 = (2sji − sjj)αc,
a2 = eiZ + (−2sjj − r′jZ + sji)αc where ei = s2jjr

′
i + sjisijr

′
j > 0,

a1 = eiZ − (sjj + r′jZ)αc + diZ

where di = sijr
′
j
2
Zci , with Zci =

sii
r′i

(
tii
tji
− 1

)
,

a0 = sjir
′
j
2
(Zci − Z)Z.

By analogy, one can obtain the polynomial coefficients:

a′4 = −sijαc,
a′3 = −(2sij − sii)αc,
a′2 = e′iZ − (−2sii − r′iZ + s′j)αc where e′i = s2iir

′
j + sijsjir

′
i > 0,
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a′1 = e′iZ + (sii + r′iZ)αc + d′iZ

where d′i = sjir
′
i
2
Zcj , with Zcj =

sjj
r′j

(
tjj
tij
− 1

)
, and

a′0 = sijr
′
i
2
(Zcj − Z)Z.

Statement (iv) of Proposition 3.2. Let αc > 0. Suppose αc = αZ(E∗), this
means det(J(E∗)) = 0. Without loss generality, set the eigenvalues are
λi1 = −(siix

∗
i + sjjx

∗
j ) and λi2 = 0 associated respectively at eigenvectors:

v1 = (θ1, 1)′ and respectively v2 = (1, θ2)
′, where

θ1 =
x∗i (siix

∗
i + sijx

∗
j + sij(1 + x∗j ))

sjjx∗j (1 + x∗j )

and

θ2 = −
sjjx

∗
j + sjix

∗
i + sji(1 + x∗i )

sjj(1 + x∗i )
.

Let:

P =

(
θ1 1
1 θ2

)
thus P−1 =

1

1− θ1θ2

(
−θ2 1

1 −θ1

)
by change (

xi
xj

)
= P

(
x
y

)
(A.32)

we have (
ẋ
ẏ

)
= P−1

(
ẋi
ẋj

)
. (A.33)

which is equivalent to
ẋ =

1

1− θ1θ2
(ẋj − θ2ẋi)

ẏ =
1

1− θ1θ2
(ẋi − θ1ẋj).

(A.34)


ẋ =

ε11x
2 + ε12y

2 + F (x, y)

1− θ1θ2
+ o(||(x, y)||)

ẏ =
ε21x

2 − ε22y2 +G(x, y)

1− θ1θ2
+ o(||(x, y)||)

(A.35)
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where

ε11 = −sjj + θ1(−sji + siiθ1θ2 + sijθ2),

ε21 = θ1(−siiθ1 + sji − sjj + sjiθ1),

ε12 = θ2(−sjjθ2 − sji + sii + sijθ2),

ε22 = (sii + θ2(sij − sjjθ1θ2 − sjiθ1)),
F (x, y) =[(2siiθ1 + sijθ1θ2 + sij)θ2 − sjiθ1θ2 − sji − 2sjjθ2]xy and

G(x, y) =[(sjiθ1θ2 + sji + 2sjjθ2)θ1 − sijθ1θ2 − sij − 2siiθ1]xy.

With F (0R2) = G(0R2) = 0R2 , JQ(0, 0) =

(
0 0
0 0

)
where JQ denotes the

Jacobian Matrix of Q(x, y) =

(
F (x, y)
G(x, y)

)
; furthermore, there exists δ > 0,

r ≥ 1 and a function h ∈ Cr(Nδ(0)) that defines locally the center manifold
and satisfies

h(0) = 0 and Dh(0) = 0.

So, y = h(x) = o(x2) in [39]. As Ec =< v2 > is tangent to the center
manifold at origin, then:

W c(0) = Ec with v2 = (1, θ2)
′ .

Thus E∗ is stable for the system (2).

B Jacobian Matrix

— at exclusion equilibrium Ei:

J(Ei) =


−riZ −Kiisij(Kij + 1)

0
rjZ

1 +Kii
− sjiKii

 (B.36)

The Jacobian Matrix of Q obtained form (22) is

JQ(X,Y ) =

−2siiX + ψY σ1Y + ψX

−sij4Y σ2Y − sjiX

 (B.37)
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where σ1 = 2γ(sij − sii − sjj), ψ = 2siiγ − sij − sji and σ2 = 2(sjiγ − sjj).
— at coexistence equilibrium E∗:

J(E∗) =

 −siix∗i Σ1(x
∗, y∗)

Σ2(x
∗, y∗) −sjjx∗j

 (B.38)

where

Σ1(x
∗, y∗) = −x∗i

(
siix

∗
i + sijx

∗
j

1 + x∗j
+ sij

)
and

Σ2(x
∗, y∗) = −x∗j

(
sjjx

∗
j + sjix

∗
i

1 + x∗i
+ sji

)
.

— at (x′i, xj) where x′i = xi −Kii:

J(x′i, xj) =

j1(x′i, xj) j2(x
′
i, xj)

j3(x
′
i, xj) j4(x

′
i, xj)

 (B.39)

j1(x
′
i, xj) =

−riZ
1 + xj

− 2(x′i +Kii)− sijxj ,

j2(x
′
i, xj) =

−riZ
(1 + xj)2

− sij(x′i +Kii),

j3(x
′
i, xj) =

−rjZxj
(1 + x′i +Kii)2

− sjixj ,

j4(x
′
i, xj) =

rjZ

1 + x′i +Kii
− 2sjjxj − sji(x′i +Kii).

In particular, when Z = Zci the jacobian Matrix (B.39) at x′i = 0 and
xj = 0 is as form:

J(0, 0) =

(
−riZ −Kii(riZ + sij)

0 0

)
(B.40)

C Descartes critera

Theorem C.1 ([40]). Consider Pn(x) = anx
n + an−1x

n−1 + ... + a0 with
an 6= 0 a polynomial and ν the number of sign changes of the coefficients
{ai}(i∈N). Then the k number of real positive zero of Pn is equal or less
than ν by (ν − k) is the even number.
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[40] A. G. Khonvaanskĩi (1991): Fewnomials, 88, Translations of Mathematical
Monographs.

Biomath Communications 8 (2021), 2112171, 10.11145/bmc.2021.12.171 44/44

https://eudml.org/doc/128680
https://www.ijdea.eu
https://doi.org/10.1017/CBO9780511624094
https://doi.org/10.1007/978-1-4612-1140-2
https://doi.org/10.1007/978-1-4612-1140-2
https://doi.org/10.1007/BF00173267
https://doi.org/10.1007/BF00173267
https://doi.org/10.1017/CBO9780511530043.002
https://doi.org/10.1007/978-1-4613-0003-8_2
https://doi.org/10.1007/978-1-4613-0003-8_2
https://doi.org/10.11145/bmc.2021.12.171

	Introduction
	The Mathematical Model
	Mathematical analysis
	Lotka-Volterra-MacArthur model outcomes: Competitive effects relations
	General properties of the model
	Coexistence equilibrium point
	Local asymptotic stability of equilibria
	Exclusion of one species equilibria
	Coexistence equilibrium E*


	Asymptotic Behaviors: Resource Based Model Outcome
	Balanced intra-inter specific competition effects
	Unbalanced intra-inter specific competition effects

	Numerical simulations
	Conclusion
	Proofs
	Jacobian Matrix
	Descartes critera

