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Abstract In this paper we study the distance between the sign
function and a class of parametric activation functions. The distance
is measured in Hausdorff sense, which is natural in a situation when
a sign function is involved. Precise upper and lower bounds for the
Hausdorff distance have been obtained.
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Introduction

Sigmoidal functions (also known as “activation functions”) find
multiple applications to neural networks [1],[4]-[8]. We study the
distance between the sign function and a special class of sigmoidal
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functions, so-called parametric activation functions. The distance is
measured in Hausdorff sense, which is natural in a situation when
a sign function is involved. Precise upper and lower bounds for the
Hausdorff distance are reported.

Parametric Algebraic Activation (PAA) function

The following are common examples of activation functions [I]:

1
o(t) = (the squashing function (logistic))
1+et
0, if t<—1,
o(t) =4 &1, if—1 <t < 1, (the piecewise linear(cut, ramp)Lfunction)
1, if t> 1.

1 1
o(t) = 3 + = arctan(t) (the arctan sigmoidal function).

Elliott activation function [2] is defined as

The Parametric Algebraic Activation (PAA) function [3] is given
by
(1 +alx
oy = _tala)

1+ |z|(1 + alz|)

For a = 0 we obtain the Elliott activation function. Evidently,
fi(xz) >0, ie. f,(z) is increasing on R. The range of f,(z) belongs to
[—1,1].

The following theorem is proved in [3]:

reR, a>0. (1)

Theorem A. The family of activation functions converges to
the sign function, i.e. for all € > 0 there exists ¢ such that for a > ¢

< €.

fa(x) - ‘%
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Figure 1: Approximation of the sign function by (PAA)-function for
a = 50; Hausdorff distance is d = 0.241102.

Definition [9], [10]. The Hausdorff distance p(f,g) between two in-
terval functions f, g on Q C R, is the distance between their completed
graphs F'(f) and F(g) considered as closed subsets of 2 x R.

Simbolically, we have

fyg) =max{ sup inf ||A— B||, sup inf ||[A— B|l}, (2
g =mas{ sup int A= Bl swp int A= B}, (2
wherein [|.|| is any norm in R? e. g. the maximum norm ||(¢,z)|| =
max{|t|,|z|}; hence the distance between the points A = (t4,x4),
B = (tg,zp) in R? is ||A — B|| = max(|ta — tg], |z4 — zB]|).

Let us point out that the Hausdorff distance is a natural measuring
criteria for the approximation of bounded discontinuous functions [11],
[12].

We study the Hausdorff distance d between the sign function and
the (PAA)-function. The sign function, also known as Heaviside step
function, is considered as an interval function in the sense of interval
analysis [32], that is the value of the sign function at its jump (often
zero) is defined as an interval (often the interval [—1, 1].
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Figure 2: Approximation of the Sign function by (PAA)- function for
a = 100; Hausdorff distance d = 0.196973.
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Figure 3: Approximation of the Sign function by (PAA)- function for
a = 1000; Hausdorff distance d = 0.096347.



The Hausdorff distance d satisfies the relation f(d) =1 —d. The
following Theorem holds true

Theorem B. The Hausdorff distance d between the sign function
and the (PAA)-function is the unique positive solution of the nonlinear
equation:

d(1+ ad)
14 d(1 + ad)

Some computational examples using relation (3) are presented in
Table 1.

—1+d=0. (3)

a d computed by (3)
50 0.241102
100 0.196973
500 0.12007

1000 0.096347
2000 0.0771089
5000 0.0572753
10000 0.045665
100000 0.0213863
500000 0.0125456
1000000 0.00996633

Table 1: Bounds for d computed by solving the nonlinear equation for
various a.

The parametric algebraic activation functions for various a are vi-
sualized on Figures 1-3, where the Hausdorff distance is represented
as the side of a box, which decreases (tends to zero) when the value
of the parameter a increases (tends to infinity).

The Hausdorff approximation of the interval step function by the
logistic and other sigmoidal functions is discussed from various ap-
proximation, computational and modelling aspects in [13]-[31].



Print["Calculation of the valus of the Hausdorff distance d
between the Parametric Algebraic Activation function

and the Sign function"];

a= Input[" a"]; (+1000000 +)

Print[" a = ", a];

Print["The following nonlinear squation is used to

determination of the Hausdorff distance d: "];

E[d ] :=d*x(l+axd)/ (L+d*x(l+axd)) -1+d;

Print[£[d], " = O0"];
FPrint["The unigque positive root of the equation

is the searched valus of d: "];

FindRoot [m[d], {d, 0.1}]

Print [TableFoxrm[%]];

Calculation of the wvalue of the Hausdorff distance d
between the Parametric Algebraic Activation function
and the 2ign function
a = 1000000
The following nonlinear equation is used to
determination of the Hausdorff distance d:
d(l+1000000d]}

-1 +d+ =
1+d (1+1000000d)

The unique positive root of the equaticon
iz the searched walue of d:

{d > 0.00996633}

Figure 4: The Module in CAS MATHEMATICA.



Parametric Hyperbolic Tangent Activation (PHTA) func-
tion

The Parametric Hyperbolic Tangent Activation (PHTA) function
[32] is given by:

et — Pt

=5

prTap—r teR, g>1. (4)

We study the Hausdorff approximation d of the Sign function by
the (PHTA) function (4).

The following Theorem gives upper and lower bounds for d

Theorem C. For the Hausdorff distance d between the Sign func-
tion and (PHTA) function (4) the following inequalities hold for > 3

B 1 In(1.5(1+8))
d’_m<d< 1.5(1+ B) = dr- (5)

Proof. We need to express d in terms of /3.
The Hausdorff distance d satisfies the relation

oBd _ o—Bd
f(d):mzl—d, (6)
i.e. d is the unique positive solution of the nonlinear equation:

efd — e=Pd

P = i ~

1+d. (7)

F'(d) > 0 and F' is strictly monotonically increasing. Consider the
function

G(d) = —1+ (1 + B)d.

In addition G’ > 0 and G is monotonically increasing.
By means of Taylor expansion we obtain

G(d) — F(d) = O(d?).



Hence G(d) approximates F(d) with d — 0 as O(d?) (see Fig. 7).
Further, for § > 3 we have

G(d) =
G(dr> =

-1+ £ <0,
—1+ £ In(L5(1+ B)) > 0.

This completes the proof of the theorem.

Some computational examples using relations (5) are presented in
Table 2.

The last column of Table 2 contains the values of d computed by
solving the nonlinear equation (7).

The parametric hyperbolic tangent activation functions for various
B are visualized on Fig.5-Fig.6.

64 d d, d from (7)
3 0.166667 | 0.298627 | 0.293432
3.1 | 0.162602 | 0.295358 | 0.287694
6.5 | 0.0888889 | 0.215144 | 0.178622
13.5 | 0.045977 | 0.141591 | 0.106569
50 | 0.0130719 | 0.0566966 | 0.0391399
70 | 0.00938967 | 0.0438323 | 0.0299114

Table 2: Bounds for d computed by (5) for various f.

Conclusion
In biologically plausible neural networks, the activation functions rep-

resent the rate of action potential firing in the cell [33]. Two classes
of parameter activation functions are introduced (PAA and PHTA
functions) finding applications in neural network theory and practice.
Theoretical and numerical results on the approximation in Hausdorft
sense of the sign function by means of functions belonging to these
two classes are reported in the paper.



Figure 5: Approximation of the Sign function by (PHTA)- function
for § = 1; Hausdorff distance d = 0.521298.
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Figure 6: Approximation of the Sign function by (PHTA)- function
for 8 = 13.5; Hausdorff distance d = 0.106569.
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Figure 7: The function F'(d) and G(d).
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