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Abstract This paper deals with the problem of travelling wave solutions in a scalar
impulsive FKPP-like equation. It is a first step of a more general study that aims
to address existence of travelling wave solutions for systems of impulsive reaction-
diffusion equations that model ecological systems dynamics such as fire-prone sa-
vannas. Using results on scalar recursion equations, we show existence of populated
vs. extinction travelling waves invasion and compute an explicit expression of their
spreading speed (characterized as the minimal speed of such travelling waves). In
particular, we find that the spreading speed explicitly depends on the time between
two successive impulses. In addition, we carry out a comparison with the case of
time-continuous events. We also show that depending on the time between two suc-
cessive impulses, the spreading speed with pulse events could be lower, equal or
greater than the spreading speed in the case of time-continuous events. Finally, we
apply our results to a model of fire-prone grasslands and show that pulse fires event
may slow down the grassland vs. bare soil invasion speed.
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1 Introduction

Mathematical models have long been central to the development of spatial theory in
ecology (e.g. Shigesada and Kawasaki (1997) [33], Okubo and Levin (2001) [23],
Volpert (2014) [43], Logan (2008) [20], (2015) [21], Perthame (2015) [25]). Math-
ematical literature that deals with species spread mostly relies on reaction-diffusion
equations. Reaction-diffusion equations assume that dispersal is governed by ran-
dom diffusion and that dispersal and growth take place continuously in time and
space (Lewis and Li (2012) [19]). They have had remarkable success in explaining
the rates at which species have invaded large open environments (Shigesada and
Kawasaki (1997) [33], Okubo and Levin (2001) [23], Lewis and Li (2012) [19],
Volpert (2014) [43], Logan (2008) [20], (2015) [21], Perthame (2015) [25]).

A simple and classic reaction-diffusion equation that presents population inva-
sion phenomenom is the so-called FKPP (Fisher, Kolmogorov, Petrowsky and Pis-
counov) equation studied by Fisher (1937) [12] and Kolmogorov et al. (1937) [17].
It consists on adding a diffusion term to the logistic growth term (Fisher (1937)
[12], Kolmogorov et al. (1937) [17]). The FKPP equation can model several ecolog-
ical ressources dynamics. Moreover, it is well-known that ecological ressource may
experience several phenomena that can be either time-continuous (growth, death,
birth, release, etc.) or time-discrete (harvest, birth, death, release, etc.) (e.g. Ma and
Li (2009) [22], Dumont and Tchuenche (2012) [10]). Therefore, a major question is
to characterize the impact of such phenomena (time-continuous or not) on the whole
dynamic of the system.

This paper deals with the FKPP equation on unbounded domain with time-
continuous as well as time-discrete (impulsive) phenomena. The aim is to assess
the impact of such phenomena in the system dynamics. This paper is the first step of
a more general study that aims to characterize existence of travelling wave solutions
for systems of impulsive reaction-diffusion equations. Impulsive reaction-diffusion
equations can be used to model ecological systems dynamics such as fire-prone
savannas. Readers are referred to Yatat et al. (2017b) [46] for travelling waves in
savanna reaction-diffusion models with time-continuous fire events. To the best of
authors’ knowledge, existence of travelling wave solutions for system of impulsive
reaction-diffusion equations is not well documented except in Huang et al. (2017)
[14]. The rest of the paper is organized as follows. In the next section (section 2),
we present the FKPP model taking into account either time-continuous or both time-
continuous and time-discrete events. In section 3 we present result on the existence
of spreading speed and traveling wave solutions for the model, and provide a for-
mula for the spreading speed. In section 4, we apply our result for the case of fire-
prone grasslands. Section 5 deals with simulations for the models. Section 6 includes
some concluding remarks and discussions.
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2 Models formulation

The FKPP model in bounded domain without any perturbations (Fisher (1937) [12],
Kolmogorov et al. (1937) [17]) reads as

∂G
∂ t

= γ

(
1− G

K

)
G+D

∂ 2G
∂x2 (1)

where t ≥ 0 and x belongs to the one-dimension spatial domain Ω = (0,d), 0 < d <
+∞. G is the state variable, γ is the intrinsic growth rate while K is the state variable
carrying capacity. The initial data is given by

0≤ G(0,x) = G0(x). (2)

In addition, we also consider homogeneous Neuman boundary conditions for the
state variable, i.e.,

∂G(t,x)
∂x

= 0 at x = 0 and x = d. (3)

However and as it was previously discussed, the state variable G can experience
several perturbations. In the case where all perturbations are taken into account as
time-continuous events, model (1) could read as

∂G
∂ t

= γ

(
1− G

K

)
G− (µ + f η)G+D

∂ 2G
∂x2 (4)

where, for example, µ may denote the natural death rate. The term f η could repre-
sent a death rate as a consequence of harvesting. In this case, f is the harvest fre-
quency while η is the constant proportion of the state variable which is removed dur-
ing the harvest. Conversely, if we suppose that perturbations that impact system (1)
are divided in two groups: those who can be taken into account as time-continuous
events (e.g. natural death) and those who may be considered as time-discrete (e.g.
harvest), then model (4) could be rewritten as follow

∂G
∂ t

= γ

(
1− G

K

)
G−µG+D

∂ 2G
∂x2 t 6= tk,

G(t+k ,x) = (1−η)G(tk,x), t = tk, tk+1 = tk + τ

(5)

where t+k = lim
θ→0+

(tk+θ) is the time just after the harvest, k = 1,2,3, ..., t ≥ 0, x∈Ω

and equations (2)-(3) still hold. In model (5), τ is the time between two successive
harvest events and τ = 1/ f where f is the harvest frequency.

Existence, unicity, positivity and boundedness of solutions of problem (4)-(2)-
(3) follow directly from Proposition 1, Lemma 2 and Proposition 2 of Yatat et al.
(2017b) [46]. Similarly, existence and unicity of solutions of problem (5)-(2)-(3)
hold according to [Rogovchenko (1997a) [28], Theorem 2.1, Rogovchenko (1997b)
[27], Theorem 2.2] while positivity and boundedness follows from Lemma 2 of
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Yatat et al. (2017b) [46] (see also Corollary 3.3 of Kiriane and Rogovchenko (1997)
[16], Lemma 1 of Yatat et al. (2017) [47]).

Before going further, let us make some comments about how impulsive phenom-
ena are taken into account in mathematical models. Actually, there exist several
possibilities including the formalism presented in system (4) (see also Lakshmikan-
tham et al. (1989) [18], Bainov and Simeonov (1995) [4], Dumont and Tchuenche
(2012) [10], Dufourd and Dumont (2013) [9], Tchuinté Tamen et al. (2016) [35],
(2017) [36], Yatat et al. (2017) [47] and references therein) as well as the formalism
advocated by Lewis and Li (2012) [19] (see also Vasilyeva et al. (2012) [42], Fazly et
al. (2017) [11], Huang et al. (2017) [14] and references therein). For τ-periodic im-
pulsive harvest events, the inter-harvest saison (i.e. the time between two successive
harvest events) has a length of τ (units of time) and at the end of the inter-harvest
saison, harvest occurs. Thus one can consider the whole time interval as a succession
of inter-harvest saisons of length τ . Let us denote the state variable at time t ∈ [0,τ]
and location x during the inter-harvest saison n as Gn(t,x). Following Lewis and Li
(2012) [19], system (5) reads as

∂Gn

∂ t
= γ

(
1− Gn

K

)
Gn−µGn +D

∂ 2Gn

∂x2 ,

Gn+1(0,x) = (1−η)Gn(τ,x), x ∈Ω , t ∈ (0,τ).
(6)

We also consider initial and boundary conditions given by equations (2) and (3),
respectively. The discrete updating function from the beginning of one inter-harvest
saison to the next is

Gn+1(0,x) = Qτ(Gn(0,x)) = Qτ [Gn](x) (7)

where Qτ is the time-τ-map of the reaction-diffusion equation of system (6) (i.e.,
the first equation of (6)).

In the sequel we discuss the problem of minimal domain size when homoge-
neous Dirichlet boundary condition (DBC) are considered instead of homogeneous
Neuman boundary condition given in (3). The homogenous DBC is given by

G(t,0) = G(t,d) = 0, t ≥ 0. (8)

In the following lemma we will distinguish two cases: time-continuous harvest
and time-discrete harvest.

Lemma 1. (Dirichlet boundary condition and minimal domain size)

1. Time-continuous harvests. Let us set

Rcont. =
γ

µ + f η
.

When Rcont. > 1, we define
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l∗cont. = π

√
D

(µ + f η)(Rcont.−1)
.

Therefore,

a. if l < l∗cont., then the solution G(t,x) of (4)-(2)-(8) satisfies

lim
t→+∞

G(t,x) = 0. (9)

b. if l > l∗cont., then (4)-(2)-(8) admits a positive equilibrium G(x), such that

lim
t→+∞

G(t,x) = G(x). (10)

Note that, when Rcont. < 1, (9) holds. That is, the population cannot persist in
space no matter how big l is.

2. Time-discrete harvests. Let us set

R =
γ

µ
, Rτ = (1−η)exp(µ(R−1)τ).

When R > 1 and Rτ > 1, we define

l∗imp. = π

√
D

ln(1−η)+µ(R−1)τ
.

Therefore,

a. if l < l∗imp., then the solution Gn(τ,x) of (6)-(2)-(8) satisfies

lim
n→+∞

Gn(τ,x) = 0. (11)

b. if l > l∗imp., then (6)-(2)-(8) has a minimal positive equilibrium G(x), and if
G0(x) is positive on an open subinterval of (0, l), then the solution sequence
Gn(τ,x) satisfies

lim
n→+∞

infGn(τ,x)≥ G(x). (12)

In addition, if R < 1 or Rτ < 1, then (11) holds (see also Lemma 3).

Proof. See Appendix 6, page 20.

In the next section, we study the nonlinear model (6) on unbounded domain
(i.e. Ω = R) and use the theory developed in Weinberger (1982) [45] to prove the
existence and linear determinacy of the spreading speed, and the equivalence of
these spreading speeds with the minimum travelling wave speeds.
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3 Mathematical analysis on unbounded domain

Non-spatial solutions of (6) satisfy{ dun

dt
= γ

(
1− un

K

)
un−µun, t ∈ (0,τ),

un+1(0) = (1−η)un(τ).
(13)

Straightforward computations lead to

Lemma 2. The solution un+1 := un+1(τ) of system (13) is given by

un+1 =
K(µ− γ)(1−η)un

(K(µ− γ)+ γ(1−η)un)e(µ−γ)τ − γ(1−η)un
. (14)

Thus, the solution of system (13) given by equation (14) generates a discrete
dynamical system. Homogeneous equilibria of system (6) are equilibria of model
(14). Model (14) always has the trivial equilibrium e0 = 0. Recall that

R =
γ

µ
, Rτ = (1−η)exp(µ(R−1)τ).

Since 0≤ 1−η ≤ 1 one has

R < 1⇒Rτ < 1. (15)

The following result is valid

Lemma 3. 1. When R < 1 or Rτ < 1, the trivial equilibrium e0 = 0 of model (14)
is globally asymptotically stable (GAS). That is, lim

n→+∞
un(τ) = 0.

2. When R > 1 and Rτ > 1, system (6) or model (14) has the positive equilibrium

eu =
K(R−1)(Rτ −1)
R(Rτ −1+η)

(16)

which is GAS.

Proof. See Appendix B, page 20.

Actually, the requirement Rτ > 1 is necessary for the population described by (6)
to grow and spread in space. In fact, let Gn(τ,x) be a solution of (6) with G0(τ,x)
bounded above by a constant u0 < eu. Then the comparison theorem for parabolic
systems based on the maximum principle (see chapter 3 of Protter and Weinberger
(1984) [26]) shows that the solution Gn(τ,x) of (6) and the solution of un(τ) of
(13) satisfy Gn(τ,x)≤ un(τ). Consequently, when Rτ < 1 and following Lemma 3,
Gn(τ,x) approaches zero uniformly in x ∈ R as n→ ∞.

In the sequel (see Remark 1), we provide some comments between the two for-
malism described by (5) and (6) without the spatial component.
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Remark 1. In Yatat et al. (2017) [47], we solved system (5) without the spatial com-
ponent and obtained a positive and periodic solution. Indeed, for t ∈ (nτ,(n+1)τ)
we found the positive and periodic solution (see Lemma 2, Yatat et al. (2017) [47])

V (t) =
K(R−1)(Rτ −1)

R(Rτ −1+η exp(−µ(R−1)(t− (n+1)τ)))
(17)

whenever R > 1 and Rτ > 1. A direct comparison allows us to observe that the pos-
itive equilibrium of model (13) given by (14) corresponds to the value of the positive
periodic solution (17) computed at t = (n+1)τ , i.e. V ((n+1)τ). This observation
reinforces the fact that there exists a direct link between the two aforementioned
modelling options of periodic impulsive events.

In the sequel we provide a result that address the travelling wave problem for
model (6). Indeed, we show that if Rτ > 1 holds, then model (6) has a positive
asymptotic spreading speed, and the spreading speed can be characterized as the
slowest speed of a class of traveling wave solutions. Applying results of Weinberger
(1982) [45] (Theorems 6.1-6.6) to the scalar system of recursion (7) as well as re-
sults of Lewis and Li (2012) [19] (Theorem 2.1), the following result holds.

Theorem 1. Suppose that Rτ > 1 is valid. Then

c∗imp. = c∗ = 2
√

D(ln(1−η)+µ(R−1))τ (18)

is the spreading speed of system (6) in the following sense: if the continuous initial
function is zero outside a bounded interval, G0(0,x) 6= 0, and 0 ≤ G0(0,x) < eu,
then for any positive ε the solution Gn(τ,x) of (6) has the following properties:

1.
lim

n→+∞
sup

|x|≥n(c∗+ε)

Gn(τ,x) = 0. (19)

2.
lim

n→+∞
sup

|x|≤n(c∗−ε)

(eu−Gn(τ,x)) = 0. (20)

Furthermore, for c≥ c∗ , system (6) has a continuous nonincreasing traveling wave
wc(x−nc) with wc(−∞) = eu and wc(+∞) = 0. A continuous nonnegative traveling
wave solution wc(x−nc) in (6) with wc(∞) = 0 and liminfx→−∞ wc(x)> 0 does not
exist if c < c∗.

Proof. The proof of Theorem 1 is using Theorem 2.1 in Lewis and Li (2012) [19],
with g(x) = (1−η)x.

The properties (19) and (20) indicate that if Gn(τ,x) is a solution of (6) with
nonzero initial data which vanishes outside a bounded interval, then an observer
who travels to the left or right with speed greater than c∗ will eventually see Gn
going to 0, while an observer who travels with a speed below c∗ will eventually see
Gn approaching eu.
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Theorem 1 further shows that c∗ is also the slowest speed of traveling wave so-
lutions connecting 0 with eu.

Considering time-continuous harvesting as in model (4), the positive equilibrium
is

Eu = K
(

1− 1
Rcont.

)
where

Rcont. =
γ

µ + f η
> 1.

Moreover, when Rcont. > 1 the spreading speed of traveling wave solutions con-
necting 0 with Eu is (see also Volpert (2014) [43], Logan (2008) [20], (2015) [21],
Perthame (2015) [25], Yatat et al. (2017b) [46] and references therein)

c∗cont. = 2
√

D(µ + f η)(Rcont.−1). (21)

Recall that with time-continuous events, the study of travelling wave solutions for
system (4) is done by considering a ’moving coordinate’ z = x−ct where c denotes
the wave speed. However for impulsive reaction-diffusion equations written as in
equation (5), such moving coordinate is not helpful. Therefore, alternative formula-
tions of impulsive reaction-diffusion equations is needed e.g. formulation presented
in (6).

In addition,

(c∗imp.)
2− (ccont.)

2 = 4D
(

ln(1−η)+
η

τ
+(γ−µ)(τ−1)

)
. (22)

Thus, compared c∗ and c∗cont is equivalent to compute the sign of the function q
defined by

q(τ) = ln(1−η)+
η

τ
+(γ−µ)(τ−1). (23)

Specifically,

• q(τ) > 0⇒ c∗imp. > c∗cont., i.e. populated vs. extinction travelling waves spread-
ing speed with impulsive harvest is greater than the spreading speed with time-
continuous harvest events.

• q(τ) = 0⇒ c∗imp. = c∗cont., i.e. with either impulsive and time-continuous harvest
events, populated vs. extinction travelling waves have the same spreading speed.

• q(τ)< 0⇒ c∗imp. < c∗cont., i.e. spreading speed of populated vs. extinction travel-
ling waves with impulsive harvests is lower than the spreading speed with time-
continuous harvest events.

4 Application to fire-prone grasslands

Grassy biomes include grassland and savanna with more or less tree cover (Bond
and Parr (2010) [5]). Savannas and grasslands dominate the terrestrial tropics and
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cover approximately 20% of the global land surface (Scholes and Archer (1997)
[31], Parr et al. (2014) [24]). Tropical grassy biome (TGB) range from open grass-
land to densely canopied savanna with up to 80% tree cover (Sankaran et al. (2005)
[29]). TGB have attracted little of the public interest and conservation attention
given to tropical forests. Indeed, according to Bond and Parr (2010) [5], the lack of
interest in tropical grassy biomes is highlighted by Web of Science searches (years:
2004-2009; databases: SCI-EXPANDED, CPCI-S) using the search terms ’biodi-
versity’ and ’tropical’ with either ’forest∗’, ’grassland∗’ or ’savanna∗’. Bond and
Parr (2010) [5] search revealed 1343 papers on tropical forests, and only 61 and
103 papers on grassland and savanna systems respectively. Using ’conservation’ in-
stead of ’biodiversity’ as a search term, confirmed their finding with more than eight
times as many papers on tropical forests than grassy biomes. Consequently, where
loss of tropical forests and their diversity is of wide public concern, loss of grassy
vegetation to croplands and plantations has proceeded with little opposition. Indeed
afforestation of grasslands is increasingly promoted as a public good (e.g. a means
of combating climate change through carbon sequestration).

Nonetheless, TGB contributes significantly to the environmental, economic, and
cultural value to the world (Bond and Parr (2010) [5]). TGB stores approximately
15% of the carbon on Earth, account for an estimated 30% of total global terrestrial
net primary productivity, represent approximately 85% of the global land area burnt
annually, and have a key role in global carbon and energy cycles (Bond and Parr
(2010) [5] and references therein). TGB are home to most of the existant mammalian
megafauna on Earth, and are the source of origin for important grain crops (e.g.,
millet and sorghum) (Bond and Parr (2010) [5]). An estimated one-fifth of the global
human population depends directly on TGB for their livelihoods, including the use
of uncleared lands for grazing, fuel wood, food, and medicinal plants (Bond and
Parr (2010) [5]).

Modelling of grassland dynamics is usually encompassed in models of tree-grass
interactions in savanna ecosystems (Walker et al. (1981) [44], Tilman (1994) [39],
Van Langevelde et al. (2003) [40], Accatino et al. (2010) [2], Tchuinté Tamen et al.
(2014) [37], (2016) [35], (2017) [36], Yatat et al. (2014) [48], (2017) [47], (2017b)
[46] and references therein). See also Tchuinté Tamen et al. (2017b) [38] for an
overview of spatially-implicit tree-grass interactions models. In this section, we ap-
ply results of section 3 in order to study grassland dynamics subjected to fire events.
As it was discussed in Yatat et al. (2017b) [46], in the contexts where fires are fre-
quent (humid savannas), they generally occur in specific periods in the year (Jeffery
et al. (2014) [15]), while in protected areas (mesic savannas) fires are often set in the
first part of the dry season (Scholes and Walker (1993) [32], Govender et al. (2006)
[13], Diouf et al. (2012) [8]). Furthermore, most of available data on fire occurrences
are given in terms of fire-return time or fire period (Scholes and Archer (1997) [31],
Van Langevelde et al. (2003) [40], Van Wilgen et al. (2004) [41], Abbadie et al.
(2006) [1], Sankaran et al. (2008) [30], Accatino et al. (2010) [2], Calabrese et al.
(2010) [7], Staver and Bond (2014) [34]). Therefore fire events are taken into ac-
count as periodic impulsive events.
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Following Yatat et al. (2014) [48], (2017) [47], (2017b) [46], we assume that the
grass biomass (G, in t.ha−1) evolves following a logistic growth where the carrying
capacity is K (t.ha−1). Grass biomass originates from the existing grass biomass
(intrinsic growth) with the rate γ (yr−1). It decreases with the rate µ (yr−1) due
to external disturbances including human activities and herbivory. The fire-induced
death rate for grass biomass is denoted by η . f (yr−1) is the fire frequency (see also
Tchuinté Tamen et al. (2014) [37], (2016) [35], (2017) [36] for similar assumptions).
τ = 1/ f is the length of inter-fire saison, i.e. the time between two successives
impulsive fire events. Moreover grass biomass experiences local isotropic biomass
propagation in space with the rate D (ha2.yr−1). Taking into account all that previous
ecological mechanisms leads to the FKPP-like model (6). In this framework, eu
represents the grassland equilibrium while e0 stands for the bare soil (absence of
vegetation) equilibrium (see Lemma 3). Recall that eu is biologically meaningful
when R > 1 and Rτ > 1. Reader is referred to [Remark 2 in Yatat et al. (2017)
[47]] for biological interpretations of these thresholds.

Based on Theorem 1, page 7, one deduces that the fire-prone grassland model
has a positive asymptotic spreading speed. Moreover, that spreading speed is char-
acterized as the slowest speed of grassland vs. bare soil traveling wave solutions.
The explicit expression of the spreading speed c∗ given in (18), page 7 highlights
a direct relationship between the period of impulsive fires (τ), the intensity of fire
(1−η), and the speed of grassland vs. bare soil invasion. Consequently, for vegeta-
tion management policies one can shape/manage the speed of the grassland vs. bare
soil invasion through the value of the fire frequency.

5 Numerical simulations

In this section we present some numerical simulations of our models based on
the nonstandard finite difference method (NSFDM) formalism (see Anguelov et al.
(2012) [3] for an overview on NFDM). Existence of vegetation mosaics involving
grasslands/savannas and forests in humid tropical regions is supported by several
empirical evidences (see Yatat et al. (2017b) [46] for more details). Moreover, in
such regions fire is a major disturbance and its frequency is not expected to be
greater than two (Bond and Keeley (2005) [6]). In the sequel parameter values are
therefore chosen in order to mimic such regions (see Yatat et al. (2017b) [46] for
more details). It is well-known that the proportion of grass biomass that is burned
depends mostly on the fire intensity. In the sequel we distinguish two levels of fire-
induced death proportion (η) of grass biomass for a given fire intensity. We first
consider a low value (20%) and then, a high value (75%).
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5.1 The case where η = 0.2

In this case, one observes fairly similar dynamics with both time-continuous and
impulsive fire events (see Figs. 1 and 2). Indeed a transient state is first observed
(e.g. t ∈ {1,3,10}) before the grassland vs. bare soil invasion wave occurs (e.g. t ∈
{15,20,30,40}) (see Fig. 2). Moreover, thanks to impulsive fires, temporal periodic
behavior is also observed (see Fig. 1).
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Fig. 1 Profile at different spatial nodes of the fire-prone grassland model with time-continuous
(top panel) and impulsive fires (bottom panel). γ = 3.5, µ = 0.2, η = 0.2, K = 15, D = 0.001,
f = 1.5, ∆ t = 0.005 (time-step), ∆x = 0.05 (space-step).

In Fig. 3 we represent level curves of the grassland vs. bare soil spreading
speed in the fire-prone grassland model when fires are taken into account as time-
continuous or impulsive events. We consider the aforementioned spreading speed as
a function of the fire frequency ( f ) and the biomass diffusion coefficient (D). In ad-
dition, in Fig. 4 we observe that for a given value of D, there exists a fire frequency
f0 such that for f ≤ f0, the spreading speed with impulsive fires is greater than the
spreading speed with time-continuous fires while the reverse holds when f ≥ f0. In-
deed, by setting D = 0.001, we derive Fig. 5 where one observes that the spreading
speed decreases with the fire frequency. In other words, reducing the time-between
two successive fires leads a decrease of the spreading speed.
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Fig. 2 Profile at different times of the fire-prone grassland model with time-continuous (top panel)
and impulsive fires (bottom panel). γ = 3.5, µ = 0.2, η = 0.2, K = 15, D = 0.001, f = 2, ∆ t =
0.005 (time-step), ∆x = 0.05 (space-step).
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Fig. 3 Level curves of the grassland vs. bare soil spreading speed as a function of fire frequency
( f ) and biomass diffusion coefficient (D) with time-continuous fires (top panel) and impulsive fires
(bottom panel). γ = 3.5, µ = 0.2, η = 0.2, K = 15.



FKPP equation with impulses on unbounded domain 13

−0.7
−0.5

−0.20

Fire frequency (f)

D

Level curve of q=c *
imp.

− c*
cont.

0
0.

1

0.
8

1.
5235

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

c*
imp.

≤ c*
cont.

c*
imp.

≥ c*
cont.
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5.2 The case where η = 0.75

In this case, one observes contrasting dynamics when time-continuous and impul-
sive fire events are considered (see Figs. 6, 7 and 8). Indeed in the case of time-
continuous fires, the wave is rapidly reached (e.g. t = 20 in the top panel of Fig. 8)
in comparison with the impulsive counterpart (t = 50 in the bottom panel of Fig. 8).
Therefore, with a relative high value of the fire-induced death rate, the wave rapidly
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Fig. 6 Profile at different spatial nodes of the fire-prone grassland model with time-continuous
fires (top panel) and impulsive fires (bottom panel). f = 1.5, γ = 3.5, µ = 0.2, η = 0.75, K = 15,
D = 0.001, ∆ t = 0.005 (time-step), ∆x = 0.05 (space-step).
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Fig. 7 Profile at different spatial nodes of the fire-prone grassland model with time-continuous
fires (top panel) and impulsive fires (bottom panel). f = 2, γ = 3.5, µ = 0.2, η = 0.75, K = 15,
D = 0.001, ∆ t = 0.005 (time-step), ∆x = 0.05 (space-step).

takes place when time-continuous fires are considered. Conversely, the wave takes
more time to occur when periodic impulsive fires are considered. As in Fig. 1, thanks
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to impulsive fires, temporal periodic behavior is also observed but the amplitude of
the periodic behavior is more consequent in this case (see Figs. 6 and 7).
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Fig. 8 Profile at different times of the fire-prone grassland model with time-continuous fires (top
panel) and impulsive fires (bottom panel). γ = 3.5, µ = 0.2, η = 0.75, K = 15, D = 0.001, f = 2,
∆ t = 0.005 (time-step), ∆x = 0.05 (space-step).
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Fig. 9 Level curves of the grassland vs. bare soil spreading speed as a function of fire frequency
( f ) and biomass diffusion coefficient (D) with time-continuous fires (top panel) and impulsive fires
(bottom panel). γ = 3.5, µ = 0.2, η = 0.75, K = 15.
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Similarly as in Fig. 3, we represent level curves of the grassland vs. bare soil
spreading speed in the fire-prone grassland model as a function of f and D (see Fig.
9). Moreover, from Fig. 10 we deduce that f0 exists for a given value of the diffusion
coefficient D (see also Fig. 4). Furthermore, in the particular case where D = 0.001,
a decrease of the spreading speed with the fire frequency is depicted in Fig. 11.
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Fig. 10 Level curves of the difference of grassland vs. bare soil spreading speed as a function of
f and D, experiencing impulsive or time-continuous fires. γ = 3.5, µ = 0.2, η = 0.75, K = 15.
Red lines correspond to c∗imp. ≥ c∗cont., blue lines correspond to c∗imp. ≤ c∗cont. while the purple line
corresponds to c∗imp. = c∗cont..
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Fig. 11 Grassland vs. bare soil spreading speed of the fire-prone grassland model with time-
continuous fires (top panel) and impulsive fires (bottom panel). γ = 3.5, µ = 0.2, η = 0.75, K = 15.
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6 Conclusion-discussion

In this paper we considered a classic and well-known reaction-diffusion scalar
equation taking into account periodic impulsive events.

Based on recursion equation proposed by Weinberger (1982) [45] and using re-
sults of Lewis and Li (2012) [19] we derived an explicit expression of the popu-
lated vs. extinction spreading speed. We carried out a comparison with the time-
continuous counterpart and showed that depending on the value of the time between
two successive impulsive events, the spreading speed with impulsive events can be
greater, equal or lower than the spreading speed with time-continuous events. In ad-
dition, we applied our results in order to get some insights for fire-prone grassland
dynamics. We found that the time between two successive fires has the potential
to shape the speed of the grassland vs. bare soil invasion. Moreover, depending on
the magnitude of the fire-induced death rate η , the fire-prone grassland model with
either time-continuous or impulsive fires experiences fairly similar dynamics (e.g.
low values of η) or contrasted dynamics (e.g. high values of η).

This paper is a first step towards a more general study to characterize the exis-
tence of travelling wave solutions for a system of reaction-diffusion equations with
impulses.
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Appendix A: proof of Lemma 1

Let us set S =
γ

µ + f η +Dλ1
where λ1 =

π2

l2 . Following the proof of Theorem 4.3

of Zheng (1986) [49] (see also Theorem 3.3 of Zheng (1987) [50]) one deduces that
if S < 1 then E0 = 0, the trivial equilibrium of (4)-(2)-(8) is globally asymptotically
stable i.e., lim

t→+∞
G(t,x) = 0. Recall that S < Rcont. where Rcont. =

γ

µ + f η
. In

addition, when Rcont. > 1, one has S < 1⇔ l < l∗cont. = π

√
D

(µ + f η)(Rcont.−1)
.

Therefore, part 1.a. of Lemma 1 holds.
Based on Theorem 4.4 of Zheng (1986) [49] (see also Theorem 3.4 of Zheng

(1987) [50]) and by using the concept of upper/lower solution one proves that
when l > l∗cont., system (4)-(2)-(8) admits a positive equilibrium G(x). In addition
following the proof of Theorem 6.3.1 of Zheng (2004) [51] one can prove that
lim

t→+∞
G(t,x) = G(x). This achieves the proof of part 1.b. of Lemma 1.

Part 2 of Lemma 1 is done following the proof of Theorem 3.1 of Lewis and Li
(2012) [19], with g(x) = (1−η)x.

Appendix B: proof of Lemma 3

Let us denote by F the right hand side of model (14).

F ′(u) =
K2(µ− γ)2(1−η)e(µ−γ)τ

(K(µ− γ)e(µ−γ)τ +uγ(1−η)(e(µ−γ)τ −1))2
.

Therefore, F ′(0) =
(1−η)

e−µ(R−1)τ = Rτ . Consequently for R < 1 (with relation (15))

or Rτ < 1, the trivial equilibrium e0 = 0 is GAS. The first part holds.
Positive equilibria u of model (14) satisfy

u =
K(µ− γ)u

(K(µ− γ)+ γu)e(µ−γ)τ − γu
.

After direct computation one obtains

eu =
K(R−1)(Rτ −1)
R(Rτ −1+η)

.

Equilibrium eu is biologically meaningful whenever R > 1 and Rτ > 1. Moreover,
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F ′(eu) =
K2(µ− γ)2(1−η)e(µ−γ)τ

(K(µ− γ)e(µ−γ)τ +uγ(1−η)(e(µ−γ)τ −1))2

=
K2(µ− γ)2(1−η)e(µ−γ)τ

(e(µ−γ)τ)2(K(µ− γ)+ euγ(1−η)(1− e−(γ−µ)τ))2

=
Rτ K2(µ− γ)2

(K(µ− γ)+ euγ(1−η−Rτ))2

=
Rτ K2(γ−µ)2

(K(γ−µ)+ euγ(Rτ −1+η))2 .

(24)

Substituting eu in (24) leads that

F ′(eu) =
Rτ K2(γ−µ)2

(K(γ−µ)+K(γ−µ)(Rτ −1))2

=
Rτ K2(γ−µ)2

(K(γ−µ)Rτ)2

=
1

Rτ

.

(25)

Since Rτ > 1, one deduces from (25) that |F ′(eu)| < 1. That is equilibrium eu is
GAS. This ends the proof.
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