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Abstract Genetic networks play a fundamental role in the regulation and control
of the development and function of organisms. A simple model of gene networks
assumes that a gene can be switched on or off as regulatory inputs to the gene
cross critical thresholds. In studies of dynamics of such networks, we found unusual
behavior in which phase plane trajectories display irregular dynamics that shrink
over long times. This observation leads us to identify a type of dynamics that can
be described as collapsing chaos, in which the Lyapunov exponent is positive, but
points on the trajectory approach the origin in the long time limit.
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1 Introduction

One of the idealizations of genetic regulatory networks is that gene expression is
regulated in a combinatorial fashion. Each gene is switched “on” or “off” by some
combination of protein transcription factors. Modern research in genetic control has
focused on the network wiring diagrams for regulatory control [6]. In work going
back to the 1970s [8, 9], our group has proposed a mathematical formulation that
develops piecewise linear models for this type of regulatory control. In this work,
transcription factors are both produced and destroyed continually. Each transcrip-
tion factor has a threshold and as it passes the threshold, the production of other
transcription factors to which it is an input are either turned on or off or there is
no effect: what happens in each case depends on the particular control functions
assumed. As discussed in prior work, these piecewise linear equations can exhibit a
large number of different dynamical properties including stable steady states, stable
limit cycles, chaotic dynamics, and multiple attractors [4, 5]. A variety of modifica-
tions of the original equations is possible to include the effects of continuous rather
than switching control, ot to include multiple thresholds for the control.

We have been working to develop techniques to predict possible nonlinear dy-
namical behaviors of a given network based on the wiring diagram of the network.
One strategy we have used is to generate random networks and then analyze the re-
sulting dynamics. In a recent paper we described weird dynamic behavior in a four
dimensional network [13]. In the following, we focus attention on one unusual as-
pect of the dynamics observed in this example: an apparently shrinking or collapsing
chaotic attractor.

In Section 2, we present a simple negative feedback system to introduce the class
of models that we study. In Section 3, we briefly review the Lyapunov exponent and
its relevance to the study of sensitive dependence on initial conditions. We also give
a simple example that demonstrates that the Lyapunov exponent alone is not ade-
quate to understand the long time dynamics in a simple system. Finally, in Section
4 we present numerical evidence of a more complicated system that has interesting
long term dynamics that we term “collapsing” chaos.

2 A simple negative feedback system

In a negative feedback system, the ouput of a system acts to inhibit one of the steps
of its production. The simplest type of negative feedback system would have two
variables: say y1 and y2 where y1 activates or stimulates the production of y2 and y2
inhibits the production of y1. One representation of such a system is [7]
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where λi, γi and θi represent production constants, decay constants, and thresholds,
respectively. To make matters simple, we assume that λi = 1, γi = 1, and θi = 0.5,
for i = 1,2. In this model system, the control of production is governed by the Hill
function

h(y) =
yn

yn +θ n , (2)

where θ = θ1 = θ2 = 0.5.
In Figure 1, we show the dynamics from numerical integration assuming n = 4

in panel (a) and n = 40 in panel (b). There is a decaying, oscillatory approach to the
fixed point at (0.5,0.5). Due to the high value of the Hill coefficient n in panel (b),
the trajectories are approximated by straight lines suggesting the following strategy
for analysis.
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ẏ2 =

0
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Fig. 1 Equation (1) in the y1 − y2 plane. The trajectory is in red, and the isoclines are in blue,
for λi = 1, γi = 1, and θi = 0.5, for i = 1,2. (a) n = 4; (b) n = 40. There is an approach to the
fixed point at (0.5,0.5) in both cases. In the lower right “quadrant” of panel (b) the trajectory is
approximated by a straight line directed towards the point (1,1).

In the limit as n→ ∞ the sigmoidal Hill functions can be written in terms of the
Heaviside function,

lim
n→∞

h(y) = H(y−θi), (3)

where H(u) = 1 for u≥ 0 and H(u) = 0 for u < 0.
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For convenience and following our early analysis [9], we shift the fixed point to
the origin by defining xi = 2(yi− θi). Defining Xi = H

( xi
2

)
, in the new coordinate

system in the limit n→ ∞, the dynamics are given by

dx1

dt
=−1+2X̄2− x1,

dx2

dt
=−1+2X1− x2,

(4)

where the overbar indicates negation, X̄i = 1−Xi. This is a piecewise linear system
whose dynamics can be determined by simple construction. There are 4 focal points
at (1,1), (1,-1), (-1,-1), (1,-1). The flow in each quadrant is a straight line directed
towards the focal point in the next quadrant in a counterclockwise direction. Thus,
for an initial condition x1(0) ≥ 0, x2(0) < 0) by direct integration the trajectory is
given by

x1(t) = 1+(x1(0)−1)e−t

x2(t) = 1+(x2(0)−1)e−t
(5)

or
x1(t)−1
x1(0)−1

=
x2(t)−1
x2(0)−1

. (6)

Starting at an initial condition of (0,−a0), Eq. (6) holds until x2(t) = 0. Calling a1
the value of x1 when x2(t) = 0, we find a1 = a0/(1+a0). In similar fashion, defining
an the distance of the trajectory from the origin on the nth threshold crossing, we
have

an+1 =
an

1+an
. (7)

By iterating we find that
an =

a0

1+na0

so that limn→∞ an = 0. The behavior of the Eqs. (4) and (7) is exploited in the exam-
ples that follow.

3 The dyadic map in a shrinking domain

One of the hallmark features of chaotic dynamics is sensitive dependence on initial
conditions. Sensitive dependence on initial conditions is typically characterized by
the Lyapunov exponent, which is the natural logarithm of the leading eigenvalue. A
positive Lyapunov exponent in a nonlinear system is often taken as one of the factors
used to define chaos [1, 3]. However, there are a number of examples that illustrate
that a positive Lyapunov exponent is not necessarily synonymous with sensitive de-
pendence on initial conditions [2, 11], or with a positive Lyapunov exponent of a
linearization of the system (the Perron effect) [12], or with existence of a complex
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attractor (even in a bounded system) [10]. In [10], the positive Lyapunov exponent
is transient, and is eventually lost. We provide an example in which the positive Lya-
punov exponent is not lost, but nevertheless all trajectories asymptotically collapse
to a fixed point.

Consider the following simple difference equation

yn+1 = 2yn mod an

an+1 =
an

1+an

(8)

with the initial condition of a0 = 1, 0 < y1 < 1.
Consider the sequence of values of yn. In this example, the Lyapunov exponent

is ln2. However, limn→∞ yn = 0. Thus, there is a positive Lyapunov exponent in a
system that converges to 0. We call this phenomenon “collapsing chaos”.

4 Four-dimensional gene network

In Section 2, we discussed the dynamics in a continuous nonlinear and piecewise
linear model of a negative feedback system. This system can also be taken as model
genetic network. In previous work, we have examined the general class of models
in which we similarly have piecewise linear equations [4, 5, 13]. The following set
of equations was found in studies of randomly generated 4-dimensional piecewise
linear models of gene networks [13].

dx1

dt
= 2X̄4−1− x1

dx2

dt
= 2(X̄3X1 +X1X3X4 + X̄1X̄3X4)−1− x2

dx3

dt
= 2(X̄1X̄4 +X1X2)−1− x3

dx4

dt
= 2X1−1− x4 ,

(9)

where xi are continuous variables, Xi are logical variables defined by Xi = H(xi),
where H(x) is the Heaviside step function, X̄i = 1−Xi for each i = 1, ...,4.

There are several different ways to visualize the dynamics in this system. In Fig-
ure 2, we show projections in the subspaces defined by taking each pair of two vari-
ables following a transient of 9000 threshold crossings. This projection shows that
in the x1x4 subspace there is a decaying oscillation, reflecting the negative feedback
loop between x1 and x4 in which x1 activates x4 and x4 inhibits x1. This decaying
oscillation, in turn, acts as a decaying periodic input to x2x3. The projection on the
x2x3 plane has a weird geometry with spike and cogwheel projections. As we ana-
lyzed in our previous paper [13], the interaction between x2 and x3 is predominantly
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Fig. 2 Projections of Eq. 9 in the 6 subspaces defined by taking each pair of two variables. The
projections are plotted for 300 threshold crossing following a transient of 9000 threshold crossings
from an initial condition of: x1 = 0.500, x2 = 0.036, x3 = −0.057, x4 = 0.500. Reproduced from
[13].

a negative feedback system also in which x2 activates x3 and x3 inhibits x2, but some
of the states of this interaction are modulated by the inputs from x1 and x4.

Figure 3 shows the trajectories at two different times. As time progresses the am-
plitude of the oscillation decreases. This decrease can be demonstrated numericallly
by plotting the amplitude (defined as the minimum value of |x2|+ |x3| for 3 consec-
utive threshold crossings) of the oscillation as a function of time, Figure 4. From the
numerical simulation the amplitude does not decrease monotonically, but over the
long term the ampltude is decreasing.

In order to analyze this model, we considered a modification of the system in
which the amplitude and the period of the x1x4 oscillation was fixed. In this modified
system, the trajectory is a square in the x1x4 plane with a constant amplitude |x1|+
|x4| = m. In [13], we assumed m = 1, but any other value could have been taken.
Due to the piecewise linear nature of the underlying equations, we were able to
compute trajectories in the x2x3 plane. In this computation, the jumps in amplitude
are scaled by m. However, matrices that govern the expansion and contraction (see
Table VII in [13]) can be shown to be independent of m, and thus their eigenvalues
are independent of m. Since all trajectories (apart from a set of measure 0) have a
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Fig. 3 Representative traces of the dynamics in Eq. 9 at two different times. Notice the difference
in the scales. x1(dark blue), x2(green), x3 (red), x4 (light blue). Reproduced from [13].
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Fig. 4 Fluctuations of the amplitude in Eq. 9. Reproduced from [13].

corresponding matrix with an eigenvalue λ1 > 1, the maximal Lyapunov exponent
is log(λ1)> 0.

If we return to Eqs. (9), which include decay terms, the driving oscillator (x1,x4)
is damped and its amplitude converges to zero, so effectively, m decreases and the
size of the jumps in amplitude for the driven oscillator (x2,x3) shrink. Furthermore,
the decay terms for the driven oscillator apparently cause it too, to be damped though
the random jumps are superimposed. We also expect that the independence of the
Lyapunov exponents with respect to the jump size, m, for the non-damped version
of the model also holds for the damped model. Thus, we conjecture that the entire
system of Eq. (9) must converge asymptotically to the origin and displays collapsing
chaos.
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5 Conclusion

We have shown that a particular 4-dimensional differential equation has positive
Lyapunov exponents, producing irregular motion, which nevertheless collapses to
the origin asymptotically. While it is much more complicated than the shrinking
dyadic map of Section 3, the decay is quite similar in character in the two cases. We
propose a concept of “collapsing chaos”, since technically, a system in which the
origin is globally asymptotically stable would not be considered chaotic (there is
no chaotic attractor), but even here, positive Lyapunov exponents can cause mixing
that appears chaotic locally in time.
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