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Abstract In this work, we perform a stability analysis of a compartmental SEIHRD
model. This model is a simplified version of a previous approach. In this previ-
ous work, we proposed an original deterministic spatial-temporal model, called Be-
CoDiS (Between-Countries Disease Spread), to study the evolution of human dis-
eases within and between countries. This model was validated by considering data
from the 2014-16 West African Ebola Virus Disease epidemic. Here, considering
some simplification assumptions in Be-CODIS, our goal is to study the equilibria
of the model and their stability using the basic reproduction ratio as a threshold
parameter. Finally, we validate the obtained results by considering some numeri-

Diène Ngom
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cal experiments based on data from the 2014-16 West African Ebola Virus Disease
epidemic.

1 Introduction

Modeling and simulation are important decision tools that can be used to control
human and/or animal diseases [1, 13, 21]. In a previous work (see [14]), we have
presented a spatial-temporal epidemiological model, called Be-CoDiS (Between-
Countries Disease Spread), for the study of the spread of human diseases between
and within countries. This model is an adaptation of Be-FAST (Between Farm An-
imal Spatial Transmission), which simulates the spread of animal diseases between
farms [13, 21, 19, 20, 18]. More precisely, Be-CoDiS is based on the combination
of a deterministic Individual-Based model (where countries are considered as indi-
viduals) [8], simulating the between-country interactions (here, migratory flux) and
disease spread, with a deterministic compartmental model [5] (a system of ordinary
differential equations), simulating the within-country disease spread. This model
also considers dynamic parameters to tackle the application of possible sanitary
control measures. Be-CoDiS was validated by considering the case of the 2014-16
West African Ebola Virus Disease (EVD) epidemic [11, 6]. EVD is a human and pri-
mates virus disease that causes a high mortality rate in affected population (between
50% and 90%) [10].

In Ref. [14], we have made a detailed description of the model and have pre-
sented some numerical results. In this previous article, no theoretical analysis of
the mathematical properties of Be-CoDiS was performed. Thus, here, our goal is to
propose a novel analysis regarding the mathematical stability of a simplified version
of Be-CoDis, focusing only on one country with constant parameters. This simpli-
fied approach is based on a compartmental SEIHRD model. To this aim, we analyze
the behavior of the equilibrium states of this model. In particular, we estimate the
disease basic reproduction ratio , denoted by R0, according to the model parameters
(see [3] for more details). From a mathematical point of view, it is generally ob-
served that if R0 > 1 then the epidemic becomes endemic, whereas if R0 ≤ 1 then
the epidemic disappears [1]. Finally, we validate the obtained theoretical results by
considering numerical experiments based on data from the 2014-16 West African
Ebola virus epidemic. We note that similar works have been proposed in the lit-
erature for other Ebola outbreaks and models (see, e.g., [7, 17]). However, as the
structure of those models was different from the one used here and the evolution of
the considered epidemics was not similar to the 2014-16 one (which is considered
as exceptional, due to its magnitude), the study proposed here is of high interest to
understand the possible changes in the dynamic of Ebola epidemics.

This work is organized as follows. In Section 2, we formulate the considered
SEIHRD model. In Section 3, we study its equilibrium states. In Section 4, consid-
ering data from the 2014-16 West African Ebola virus epidemic, we validate and
illustrate the theoretical results with numerical experiments.
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2 Mathematical modelling

We consider a disease with the following states for people (see [14]):

• Susceptible (denoted by S): The person is not infected by the disease pathogen.
• Infected (denoted by E): The person is infected by the disease pathogen but can-

not infect other people and has no visible clinical signs (e.g., fever, hemorrhages,
etc.). After an incubation period, the person passes to the Infectious state.

• Infectious (denoted by I): The person can infect other people and start develop-
ing clinical signs. The mean duration of a person in this state is called infectious
period. After this period, infectious people are taken in charge by sanitary au-
thorities and we classify them as Hospitalized.

• Hospitalized (denoted by H): The person is hospitalized and can still infect other
people. At the end of this state, the person can pass either to the Recovered state
or to the Dead state. We point out that state H does not include hospitalized
people which cannot infect other people any more. This last category of people
is included in the Recovered state explained below.

• Dead (denoted by D): The person has not survived the disease. The cadavers of
infected people can infect other people until they are buried. After a fixed average
time, the body is buried and can no longer infect other people.

• Recovered (denoted by R): The person has survived the disease, is no longer
infectious and develop a natural immunity to the disease pathogen.

For the sake of simplicity, we assume that the population size in the considered
country is constant and equal to N ∈ N (i.e., death flows are compensated by birth
flows entering the susceptible state). This hypothesis is reasonable as, due to the size
of the population in a country and the time scale of the study (generally lower than
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Fig. 1 Diagram of the simplified model for one country considered in Section 2
.
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five years) considered here [12]. A validation of this assumption can be found in
[14]. Furthermore, to simplify the notations, we consider that S, E, I, H, R and
D denote the ratio of people in each state in the considered country (rather than the
total number of people). A diagram of this model for one country is shown in Figure
1.

Under these assumptions, the evolution of the epidemic, is modeled by

dS(t)
dt

= −S(t)
(

βII(t)+βHH(t)+βDD(t)
)
+θD(t)

+µ

(
E(t)+ I(t)+H(t)+R(t)

)
,

dE(t)
dt

= S(t)
(

βII(t)+βHH(t)+βDD(t)
)
− (µ +δ )E(t),

dI(t)
dt

= δE(t)− (µ + γ)I(t),

dH(t)
dt

= γI(t)−
(
µ +λ +α

)
H(t),

dR(t)
dt

= αH(t)−µR(t),

dD(t)
dt

= λH(t)−θD(t),

(1)

where

• µ ∈ [0,1] is the mortality rate (day−1),
• λ ∈ [0,1] is the disease fatality percentage,
• βI ∈ R+ is the disease effective contact rate (day−1.person−1) of people in state

I,
• βH ∈ R+ is the disease effective contact rate (day−1.person−1) of people in state

H,
• βD ∈ R+ is the disease effective contact rate (day−1.person−1) of people in state

D,
• δ , γ , α , λ and θ denote the transition rates (day−1) from a person in state E to

state I, from state I to state H, from state H to state R, from state H to state D
and from state D to state S, respectively.
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3 Stability Analysis

Let Ω = {(S,E, I,H,R,D)T ∈ [0,+∞)6/ S+E + I +H +R+D = 1}. It is straight-
forward to see that the set Ω is positively invariant for System (1) (see [4]).

For the study of the stability properties of System (1), we will compute and use
the basic reproduction ratio.

From a mathematical point of view, the value of R0 associated to the epidemi-
ological compartmental model (1) can be computed as the spectral radius of the
so-called next generation matrix (see [23] for more details and notations).

We introduce the following matrix formulation of System (1). Let P = (X ,Y )T ,
with X = (E, I,H,D)T and Y = (S,R)T . System (1) can be rewritten as{

Ẋ = F (X ,Y )−V (X ,Y )
Ẏ = g(X ,Y ), (2)

where F (X ,Y ) = F̃ (S)X , V (X ,Y ) = Ṽ X and g(X ,Y ) = g̃(S)(X ,Y )T , with

F̃ (S) =



0 βIS βHS βDS

0 0 0 0

0 0 0 0

0 0 0 0


,

Ṽ =



(µ +δ ) 0 0 0

−δ (µ + γ) 0 0

0 −γ (µ +λ +α) 0

0 0 −λ θ


and g̃(S) defined by  µ µ−βIS µ−βHS θ −βDS 0 µ

0 0 α 0 0 −µ

 .

Then, we state the following theorem.

Theorem 1. The basic reproduction ratio of System (1) (or, equivalently (2)) is given
by

R0 =
δ (αθβI + γλβH + γθβD +λθβ +µθβI)

(µ +δ )(µ + γ)(µ +λ +α)θ
.

Proof. To compute the basic reproduction ratio of the considered system, we apply
the Next Generation Matrix methodology briefly described above (see [23]).
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To do so, we first determine the disease free equilibrium points of System (1) in
Ω , i.e., the points of the form P = (X ,Y )T , with X = (0,0,0,0)T and Y = (a,b)T

such that a≥ 0, b≥ 0, a+b= 1,
(
F̃ (S)− Ṽ

)
X = 0 and g̃(S)P= 0. It is straightfor-

ward to see that Pf = (Xf,Yf)
T , with Xf = (0,0,0,0)T and Yf = (1,0)T , is the unique

admissible disease free equilibrium point of this system in Ω (we note that all the
hypothesis required for using this methodology, detailed in [23], are satisfied).

We consider F = [ ∂Fi
∂x j

(Pf )]
4
i, j=1 and V = [ ∂Vi

∂x j
(Pf )]

4
i, j=1, and obtain that F = F̃ (1)

and V = Ṽ . After computation, we observe that F and V−1 are non-negative matri-
ces. Thus, following the technique used to compute the value of the basic reproduc-
tion ratio presented in [9], we obtain after some computations (using the software
Maple 16) that the value of R0 is given by R0 = ρ(FV−1) which leads to

R0 =
δ (αθβI + γλβH + γθβD +λθβI +µθβI)

(µ +δ )(µ + γ)(µ +λ +α)θ
.

ut

Using this basic reproduction ratio R0, we have the following stability results.

Theorem 2. System (1) (or, equivalently (2)) has two equilibrium states in Ω :

1. A disease free equilibrium state Pf = (Xf,Yf)
T ∈ Ω , with Xf = (0,0,0,0)T and

Yf = (1,0)T , which is globally asymptotically stable if R0 ≤ 1 and unstable if
R0 > 1.

2. A locally asymptotically stable disease endemic equilibrium state Pe =(Xe,Ye)
T ∈

Ω if R0 > 1, with Xe = (Ee, Ie,He,De)
T and Ye = (Se,Re)

T given by Se = R−1
0 ,

Ee = θ µ (µ + γ)(µ +α +λ )φ , Ie = δθ µ (µ +α +λ )φ , He = δθγµφ , Re =
δθαγφ , and De = δγλ µφ , with

φ =
1−R−1

0
δγλ (µ−θ)+(µ +δ )(µ + γ)(µ +λ +α)θ

.

Proof. First, we determine the equilibrium states of System (2) by solving(
F̃ (S)− Ṽ

)
X = 0 and g̃(S)P = 0.

After some computation, using Maple 16, we obtain that Pf and Pe, defined previ-
ously, are the equilibrium points of this system in Ω .

Let us assume that R0 ≤ 1:
We use a method developed in Ref. [22] to determine a Lyapunov function for

the disease free equilibrium Pf. Considering this goal, the first line of System (2) is
rewritten as

Ẋ = (F−V )X− f (X ,Y ),

where F and V are defined previously and f (X ,Y ) = (F−V )X − F̃ (S)X + Ṽ X =
(F− F̃ (S))X .
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Symbolic computations done with Maple 16 show that R0 is an eigenvalue of
matrix V−1F . Furthermore,

w =
(

0, βI
βD

, βH
βD

, 1
)

is a left eigenvector, with eigenvalue R0, of the matrix V−1F .
Let Lf : R4×R2→ R be given by

Lf(X ,Y ) = wV−1X .

By calculation, we obtain that Lf is non negative in the set [0,1]6, Lf(Pf) = 0 and

L̇f(X ,Y ) = wV−1Ẋ = (R0−1)wX−wV−1 f (X ,Y )

is non negative for all (X ,Y ) ∈ Ω . Additionally, since R0 ≤ 1 and the coordinates
of wV−1 and f (X ,Y ) are non negative for all (X ,Y )T ∈ Ω , then L̇f(X ,Y ) ≤ 0 for
all (X ,Y ) ∈ Ω . Hence, Lf is a Lyapunov function of System (2) at the equilibrium
state Pf and, thus, the equilibrium Pf is globally stable since the hypotheses of the
Lyapunov Theorem are satisfied in Ω (Lyapunov 1892; see, for instance, page 5 in
Ref. [15]) .

Moreover, to show that Pf is globally asymptotically stable, we use the LaSalle’s
Invariance Principle (see, for instance, Theorem 2 in Ref. [16]). Let

Γf = {(X ,Y ) ∈Ω/L̇f(X ,Y ) = 0}.

We obtain that L̇f(X ,Y ) = 0 if and only if (R0 − 1)wX = 0 and wV−1 f (X ,Y ) =
0. This implies that S = 1 or I = H = D = 0. Thus, Γf = {(1,0,0,0,0,0)T} ∪
{(S,E, I,H,R,D)T ∈Ω/I = H = D = 0}.

In {(S,E, I,H,R,D)T ∈Ω/I = H = D = 0}, System (1) is then reduced to

dS(t)
dt

= (µ)E(t)+µR(t) ,

dE(t)
dt

= −(µ +δ )E(t),

dR(t)
dt

= −µR(t).

(3)

Therefore,
dS(t)

dt
+

dE(t)
dt

+
dR(t)

dt
=−δE(t) = 0.

As δ > 0, this leads to E(t) = 0.
Hence Γf = {(1,0,0,0,0,0)T}∪{(S,E, I,H,R,D)T ∈Ω/E = I = H = D = 0}.
Let Γf ,0 be the largest invariant set of System (1) in Γf. In {(S,E, I,H,R,D)T ∈

Ω/E = I = H = D = 0}, System (3) can be rewritten as
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dS(t)

dt
= µR(t) ,

dR(t)
dt

= −µR(t).

If 0 < R(t)≤ 1,
dS(t)

dt
= µR(t) = µ(1−S(t))

and the solution of this system is given by S(t) = S(0) ·e−µt +1> 1, which is absurd
as 0 < S(t)≤ 1. Hence Γf ,0 is reduce to Pf = (1,0,0,0,0,0)T .

Due to the Lasalle’s principle, we conclude that Pf is globally and asymptotically
stable.

Focusing on the equilibrium point Pe, if R0 ≤ 1 then Pe is not admissible in Ω .

Let us assume that R0 > 1:
System (2) satisfies the hypothesis of Theorem 2 in Ref. [23] and, thus, the equi-

librium point Pf becomes unstable when R0 > 1.
We now focus on the study of the equilibrium state Pe, which corresponds to

the endemic equilibrium. Since S(t)+E(t)+ I(t)+H(t)+R(t)+D(t) = 1, we can
remove the second equation of System (1). In this case, the linearized version of this
system at point Pr

e = (Se, Ie,He,Re,De)
T can be written as

Ż = M (Pr
e )Z, (4)

where Z =(Ŝ,Ŵ )T , with Ŝ= S−Se, Ŵ =W−(Ie,He,Re,De)
T and W =(I,H,R,D)T ,

and M (Pr
e ) a matrix associated to System (1).

Let

˜N =



−µ− γ−δ 0 0 0

γ −µ−λ −α 0 0

0 α −µ 0

0 λ 0 −θ


be a submatrix of M (Pr

e ).
Again, following the ideas introduced in Ref. [22], we define Le : R1×R4→ R

given by
Le(Ŝ,Ŵ ) =−w ˜N

˜N −1Ŵ ,

where w ˜N = (1,0,0,0) denotes the left eigenvector of ˜N associated to the eigen-
value−µ−γ−δ . After calculations, this function satisfies that Le

(
(0,0,0,0,0)T

)
=

0 and Le(Z)> 0, for all Z ∈ (0,1]5. Furthermore,
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Table 1 Values of the parameters in Set 1 and Set 2 used in during the experiments presented in
Section 4. The basic reproduction ratio (R0) generated by those values is also reported below.

Parameters Set 1 Set 2
µ 0.0197 0.0120

βI 0.1147 0.2671

βH 0.0046 0.0107

βD 0.1147 0.2671

δ 0.3643 0.0476

θ 0.8500 0.5000

γ 0.4100 0.2000

λ 0.0564 0.1272

α 0.0693 0.0148

R0 0.3291 1.3066

L̇e(Z) =−w ˜N
˜N −1 ˙̂W =−I− δ

µ+γ+δ
(S+H +R+D)

and is non negative for all Z ∈ R5
+. Hence, Le is a Lyapunov function for the lin-

earized System (4) at the origin (0,0,0,0,0)T . Thus, Pr
e is locally stable for this

system.
Let Γe = {Z ∈ R5

+ / L̇e(Z) = 0}. We note that Γe = {0}. Due to the Lasalle’s
principle, we conclude that the origin (0,0,0,0,0)T is locally and asymptotically
stable for System (4). Since System (4) is linear, we deduce that the equilibrium
state Pe is locally and asymptotically stable for System (1). ut

4 Numerical Experiments

In this section, in order to validate and illustrate the interest of the theoretical results
obtained previously, we present some numerical experiments based on data from the
2014-2016 West African EVD epidemics [11, 6].

To study some representative numerical examples, we consider two set of pa-
rameters, denoted by Set 1 and Set 2, detailed in Table 1. Set 1 and Set 2 are within
the range of values proposed in [14] for the 2014-2016 West African EVD case and
correspond to cases associated with basic reproduction ratios of 0.3291 and 1.3910,
respectively.

The initial conditions are set to S(0) = 0.999, E(0) = 0.001 and all other ratios
set to 0. The model is discretized by considering an explicit Euler scheme with a
step size of 0.1 day. The simulation is stopped after a maximum number of 3650
days; or if the evolution of people in state S from one iteration to other is lower than
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Fig. 2 Evolution of the ratio of contaminated people simulated during Experiment 1 presented in
Section 4.

10−6; or if the ratio of contaminated people (e.g., people either in the state E, I, H
or D) is lower than the inverse of the population size.

Taking into account those parameters and numerical methods, we perform the
following two experiments:

• Experiment 1: We consider the set of parameters Set 1. The evolution of the
ratio of contaminated people is presented in Figure 2. In this case, this ratio is
decreasing. The simulation stops after 91 days due to the low ratio of contami-
nated people.

• Experiment 2: We consider the set of parameters Set 2. The evolution of the
ratios of contaminated and safe people (i.e., people either in the state S or R) are
shown in Figure 3. We can observe that the epidemic reaches an endemic equi-
librium of 13% of contaminated people in the population. The simulation stops
after 1149 days due to the stabilization of the numerical solution. The endemic
equilibrium satisfy Se = 0.76534, Ee = 0.04725, Ie = 0.010609, He = 0.079172,
Re = 0.097633 and De = 0, which is numerically close from the theoretical re-
sults presented previously.

5 Conclusion

In this paper, we have performed an analysis of the equilibrium states of a compart-
mental SEIHRD model, corresponding to a simplified versions of the Be-CoDiS
model proposed in [14].

First, we have estimated the basic reproduction ratio (denoted by R0) of this
model. In particular, we have obtained in Theorem 2 an analytical expression of R0
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Fig. 3 Evolution of the ratios of contaminated and safe people simulated during Experiment 2
presented in Section 4.

according to the model parameters. Additionally, we have proven that if R0 ≤ 1,
then the disease free equilibrium is globally and asymptotically stable, which is a
desirable biological situation because the epidemic will disappear. When R0 > 1, we
shown that the disease free equilibrium is unstable and the endemic equilibrium is
locally stable. This leads to the persistence of the epidemic in the considered popu-
lation. Those results have been validated with representative numerical experiments.

One of the main interest of those results is to propose a decision tool in the case
of future outbreaks. Indeed, as said previously, the behavior of the evolution of a
possible Ebola epidemic depends on the value of R0. This basic reproduction ratio
was expressed in function of the model parameters. By performing a sensitivity
analysis of those parameters on R0, we can determine which ones have the highest
influence on the dynamic of the epidemic and allocate the sanitary resources to
control, if possible, those parameters.

In future works, as we aims to study the spread of human diseases between coun-
tries, we will complete the analysis of this simplified SEIHRD model by considering
several countries and a migration flow between them. Additionally, we will consider
whether the dimensionality of the model could be reduced (See, e.g., [2]).
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22. Z. Shuai and P. Van den Driessche. Global stability of infectious disease models using lya-
punov functions. SIAM Journal on Applied Mathematics, 73(4):1513–1532, 2013.

23. P. van den Driessche and James Watmough. Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission. Mathematical Biosciences,
180(1-2):29–48, 2002.


	Stability analysis of a compartmental SEIHRD model for the Ebola virus disease
	Diène Ngom, Benjamin Ivorra, Ángel M. Ramos
	Introduction
	Mathematical modelling 
	Stability Analysis 
	Numerical Experiments 
	Conclusion
	References



