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Abstract This paper proposes application of nonlocal operators to represent the bi-
ological pattern formation mechanism of self-activation and lateral inhibition. The
blue-green algae Anabaena is discussed as a model example. The patterns are de-
termined by the kernels of the integrals representing the nonlocal operators. The
emergence of patters when varying the size of the support of the kernels is numeri-
cally investigated.
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1 Introduction

The theory of pattern formation through local self-activation and long range inhibi-
tion accounts for much of the observed pattern forming regulatory phenomena [5].
This mechanism is captured mathematically by considering two species, activator
and inhibitor, with different spatial diffusivity, so that the resulting model is a system
of reaction diffusion equations. The formation of patterns occurring in such systems
under certain conditions was discovered by Alan Turing in 1952. Independently of
Turing’s work, Gierer and Meinhardt derived in 1972 their Theory of Biological Pat-
tern Formation showing that patterns occur only if local self-enhancing reaction is
coupled with an antagonistic reaction of long range [5, 8]. The theory was embed-
ded in a model comprising a system of reaction diffusion equations satisfying the
Turing conditions. This model is now known as the Gierer-Meinhardt model. It is
used as a mathematical model for pattern formation in many different settings. For
example, the Brusselator model for trimolecular chemical reactions is a particular
case of it [12, 3].

Here we propose modelling of the activation-inhibition mechanism of pattern
formation by using nonlocal integral operators. This approach was pioneered in [7]
for modelling of vegetation patterns. It turns out that the short range of the activation
and the long range of the inhibition can be adequately represented via the supports of
the kernels of the respective integrals. An advantage of using the nonlocal operator
model from the point of view of its theoretical and numerical analysis is that it does
not require smoothness of the solution with respect to the spatial variable.

2 A motivating example: The blue-green algae Anabaena

Patterns appear everywhere in the living world, from cell level to level of ecosys-
tems. Gierer and Meinhardt showed that, irrespective of the level of complexity of
the system, patterns are produced via the coupling of self-activation with lateral in-
hibition. Then, it is natural to try to understand this mechanism on simple systems.
In this sense, the algae Anabaena provides a good example [9]. It is a single cell
organism. However, the individual algae attach to form chains or filaments. Most of
the cells are vegetative, focused on photosynthesis. In every 7-10 vegetative cells a
cell differentiates and becomes a nitrogen fixating cell called heterocyst. This sim-
ple one-dimension pattern is very important as it spatially separates two incompati-
ble processes: the oxygen-evolving photosynthesis (in vegetative cells) and oxygen-
sensitive nitrogen fixation (in heterocysts) [1]. The control of the pattern formation
is attributed to a peptide, which is produced and released by cells differentiating as
heterocysts. This peptide inhibits the development of the other vegetative cells into
heterocyst [14]. The biology of the heterocyst has been studied intensely with varied
approaches [11]. However, many processes and genetic mechanisms are not yet well
understood [10]. Theoretical and mathematical models have been developed using
different tools, e.g. cellular automata [6], genetic networks [4, 10]. In this paper we
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model the spatial interaction of the processes of self-activation and lateral inhibition,
which produces the well-known pattern of vegetative cells and heterocysts. We use
integral operators in a single differential equation rather than the Turing mechanism
as in the Gierer-Meinhardt model.

3 The mathematical model

In most general terms we consider the spatial distribution over a domain Ω of a
substance, species or utility, which we denote by U . Usually Ω ⊆Rn, where n= 1,2
or 3. Let u(t,x) denote the spatial density of U at time t and a space location x ∈Ω .
The forces of self-activation and lateral inhibition on U are considered to be nonlocal
in the sense that their values at given time t and space point x depend not only on the
value of u at (t,x), but on the values of u at time t at all points of the spatial domain
Ω or at least a neighborhood of x of positive measure. Using the approach in [7], the
nonlocal self-activation and lateral inhibition forces can be represented via integral
operators as follows.

Self-activation: A(u; t,x) =
∫

Ω

k1(y− x)u(t,y)(1+bu(t,y))dy. (1)

Inhibition: I(u; t,x) =
∫

Ω

k2(y− x)(1−u(t,y))dy. (2)

Here b is a positive constant. Further, the kernels k1, k2 of the integral operators are
nonnegative and such that ∫

Ω

k1(x)dx =
∫

Ω

k2(x)dx = 1. (3)

Typically these function are centrally symmetric with most of the volume under the
graph concentrated around the origin. Possibly the simplest choice is

ki(x) =
{

εi if ||x|| ≤ Li,
0 otherwise, i = 1,2,

where εi, i = 1,2, are such that (3) holds. The model represents the relationship

Rate of change ∝ Activation× Inhibition.

Further, we need to take into account that the Inhibition, as defined in (2) could be
negative at (t,x), while u(t,x) = 0 and u(t, ·) is nonnegative over Ω . Hence, with a
modification to exclude the possibility of obtaining negative values, the model is

∂u(t,x)
∂ t

=

{
rA(u; t,x)× I(u; t,x) if u(t,x)> 0

0 otherwise , (4)
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where r is a positive constant.

4 Pattern formation

It is easy to observe that in the space independent case of model (4), obtained when
L1 → 0 and L2 → 0, the model is reduced to a well known cubic growth equation
with nonnegative equilibria 0 and 1, which are unstable and stable, respectively.
Further, u= 0 and u= 1 are spatially homogeneous equilibria of (4), but the stability
is not necessarily preserved.

It turn out that for positive values of L1 and L2 the positive spatially homogeneous
equilibrium is unstable and stable patterns are established. Note that the value of L1
indicates the size of the neighborhood providing support, while L2 indicates the
size of the neighborhood providing inhibition. In essence, the patterns are formed
through the Gierer-Meinhardt mechanism of self-activation and lateral inhibition.
However, this mechanism is represented in model (4) via integral operators rather
then via system of reaction-diffusion equation with the Turing conditions, [8].

We perform numerical experiments with a one-dimensional model inspired by
the considered example of the blue-green algae Anabaena. Here U can be consider
the nitrogen-fixation capacity and u(t,x) denotes its distribution along the length of
a filament at time t. The self-activation length is the length of a cell. The inhibition
length is determined by how far the messenger peptide is spread, e.g. 4-5 cells. In
the simulations we used r = 1, b = 0.5 and L1 = 5. As we vary d = L2/L1, different
patterns are obtained. Two patterns obtained for d = 4 are presented on the graphs
in Figure 1.

These pattern are stable with respect to small perturbation. Although, every run
tends to produce slightly different pattern, they have common essential character-
istics: they consist of pulses of similar magnitude and fairly regularly spread over
the domain. If we modify the model by restricting the vertical height of the pulses,
which is the usual case in practice, e.g. the maximum nitrogen-fixating capacity of
a heterocyst, the patterns become much more regular, visually indistinguishable one
from the other. A graph is given in Figure 2.

The frequencies of the pulses is determined by the value of d. On Figure 3, pat-
terns produced for different values of d are presented using a color theme to repre-
sent the values of u (yellow is high, blue is low). One can observe how as d increases
the pulses get more spaced.

5 Conclusion

It is widely accepted that the Turing mechanism for systems of reaction-diffusion
equations is appropriate way for modeling pattern formation. In fact, it seems that
it is widely believed that it is the only way, particularly given that Gierer and Mein-
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Fig. 1 Patterns obtained for d = 4.

Fig. 2 Pattern with restriction u≤ 4

hardt derived independently the same model to represent their principle of self-
activation and lateral inhibition, [8]. In this work we suggest that reaction-diffusion
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Fig. 3 Patterns for d = 2,4,6,8

systems are not a unique way of modelling spatial interactions and pattern forma-
tion. We propose a model, where the pattern formation mechanism is formulated in
term of integral operators, representing the self-activation and the lateral inhibition
forces driving the model’s dynamics. Numerical simulations for the one dimensional
case show pattern relevant to the blue-green algae Anabaena.

There has been quite substantial recent development of the theory of equations
involving nonlocal operators, e.g. see [2]. However, there is no theory as yet on
pattern formation in such equations. Here we presented a mainly numerical investi-
gation on the pattern appearing when varying the support of the respective kernels.
The theoretical analysis of this pattern formation mechanism is an open issue, well-
deserving of a research attention.
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