
Estimating the mean of a small sample under the
two parameter lognormal distribution

Peter Hingley

Abstract Lognormally distributed variables are found in biological, economic and
other systems. Here the sampling distributions of maximum likelihood estimates
(MLE) for parameters are developed when data are lognormally distributed and es-
timation is carried out either by the correct lognormal model or by the mis-specified
normal distribution. This is designed as an aid to experimental design when draw-
ing a small sample under an assumption that the population follows a normal dis-
tribution while in fact it follows a lognormal distribution. Distributions are derived
analytically as far as possible by using a technique for estimator densities and are
confirmed by simulations. For an independently and identically distributed lognor-
mal sample, when a normal distribution is used for estimation then the distribution
of the MLE of the mean is different to that for the MLE of the lognormal mean. The
distribution is not known but can be well enough approximated by another lognor-
mal. An analytic method for the distribution of the mis-specified normal variance
uses computational convolution for a sample of size 2. The expected value of the
mis-specified normal variance is also found as a way to give information about the
effect of the model misspecification on inferences for the mean. The results are
demonstrated on an example for a population distribution that is abstracted from a
survey.

Peter Hingley
European Patent Office, Munich, Germany
e-mail: phingley@epo.org

Citation: Peter Hingley, Estimating the mean of a small sample under the two parameter lognor-
mal distribution, in R. Anguelov, M. Lachowicz (Editors), Mathematical Methods and Models in
Biosciences, Biomath Forum, Sofia, 2018, pp. 100-121,
http://dx.doi.org/10.11145/texts.2018.02.027

Copyright: c© 2018 Hingley et al. This article is distributed under the terms of the Creative Com-
mons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduc-
tion in any medium, provided the original author and source are credited.

100

phingley@epo.org
http://dx.doi.org/10.11145/texts.2018.02.027
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Estimating the mean of a small sample under the two parameter lognormal distribution 101

1 Introduction

Here some analytic expressions are developed for the distributions of maximum
likelihood estimators (MLEs) of parameters of samples from the lognormal distri-
bution. These are described both under a correct lognormal estimation model (EM)
and under an incorrect normal EM. The latter situation can occur either because of
lack of knowledge of the data generating model (DGM) or because of the simplic-
ity of carrying out statistical inference under the assumption of normality. It may
also be that, for a small sample where the statistical assumptions behind the central
limit theorem do not apply, asymmetry of the data around the mean is not apparent.
Therefore a scientist may be unaware that a variable has a lognormal distribution
and so be tempted to measure the arithmetic mean and standard deviation of the
sample data in order to use normal inference.

The ideas can be applied in the experimental design phase, when considering the
possibility of a different DGM to an EM. By making presumptions about the likely
form of the population distribution, then the EM and the sample size can be chosen
to give the desired precision of the resulting estimate. At the data analysis stage,
other ways to deal with a lack of knowledge of the population distribution include
using a robust estimator like the median, or a Student’s t test for the mean in the
case of a normal distribution with unknown variance.

Lognormally distributed variables are found in biological, economic and other
systems. Sometimes it is convenient to calculate statistics directly on the log met-
ric [1] [2] [3] [4]. In this case, straightforward normal theory applies for estimating
means and standard errors. It can happen however that the original scale is impor-
tant. The expression for the MLE of the lognormal mean includes the mean and vari-
ance of the associated normal distribution on the log scale. The MLEs are neither un-
biased nor efficient in this case [5] and some other estimators are available [6] [10].
But we consider here the situation of straightforward data analysis where the MLEs
for mean and variance are used, either under the lognormal EM or under the normal
EM. The arithmetic mean, which is the MLE of a normal mean, does not include a
variance term.

Exact analytic probability density functions (PDFs) for MLEs under the lognor-
mal EM will be obtained by using a technique for estimator densities (TED) [7] [8]
[9]. On the other hand, only approximate forms are developed for the distribution of
the arithmetic mean under a lognormal DGM. The analytic PDFs are compared to
the empirical PDFs obtained by making simulations with random numbers. Exam-
ples are given in the development, firstly for a theoretical illustration and then for a
reported distribution of numbers of employees at companies applying for patents.

Section 2 explains TED as an algebraic formula for the PDF of a MLE. Section 3
reviews the exact PDFs of the MLEs of the parameters of the lognormal distribution
on lognormally distributed data. Section 4 considers the approximate PDFs of the
MLEs of the parameters under the normal distribution on lognormally distributed
data. Since this leads to some difficulties even for a sample of size 2, an alternative
approach is shown to calculate the expected value of the normal variance estimate.
This allows the expected 95 percent range limits for the mean to be found. Section
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V discusses an example involving data on the numbers of employees at companies
making patent applications from a survey. Section 6 concludes and suggests avenues
for further research. Computations were made with R programs.

2 The technique for estimator densities (TED)

This is an exact model based approach to find the density of a MLE, rather than
an approximate data based approach such as density estimation where the observed
data are used to estimate the distribution [11].

In the following, a term g() indicates a PDF. Consider independently and identi-
cally distributed (iid) data that are gathered into a (n×1) vector w. In order to obtain
the MLEs of the parameters of g(), the likelihood of the data is ∏

n
i=1 g(wi). This is

maximised by using the logarithm of the likelihood [12].
Say that l(θ ,w) is the log likelihood of the data under the EM, with p estimable

parameters in a p×1 vector θ . Let ′ and ′′ indicate differentiation by θ , once or
twice respectively. Consider cases where l(θ ,w) is continuous, differentiable and
has a single maximum with no other turning point. Then the MLEs θ̂ are given by
l′(θ ,w)|

θ=θ̂
= 0. There is also the further requirement that l(θ ,w) is differentiable

for a second time. It is desired to find g(θ̂). Following [7], consider a (p×1) vector
T .

T (θ ,θ ∗,w) = l′(θ ∗,w)− l′(θ ,w), (1)

where θ ∗ is fixed at an arbitrary value and θ is yet to be specified. Under the regular-
ity conditions that were mentioned above, the exact PDF for θ̂ is given as follows.

g(θ̂) = Ew[| j(θ ,w)||θ=θ̂
] .g[T (θ̂ ,θ∗=θ̂ ,w)](0) (2)

Here j(θ ,w)=−l′′(θ ,w) is the observed information. The term Ew[| j(θ ,w)||θ=θ̂
]

describes a conditional expectation, that is conditional on θ = θ̂ and is taken
with respect to w over the EM. The second term represents the value of the PDF
g[T (θ̂ ,θ∗,w)](t), for which θ ∗ = θ̂ and θ = θ̂ , so that t = 0 by (1).

TED allows for a distinction to be made between the functional forms of the
PDFs of the data g0(w) on the DGM and g1(w|θ) on the EM. It can also be used
when the functional form of the EM is the same as the DGM.

While TED is useful because it gives the exact PDF of the MLE, from a prac-
tical point of view it can only be applied to simple enough models for which the
components in equation (2) can be calculated. In order to illustrate how this works,
Table 1 shows some previously described examples (from [8]), where a normal EM
is used to estimate the mean when the DGM is either normal (with known variance)
or negative exponential. In the former case it turns out that g(θ̂) is normal, as is
already well known from elementary statistical theory, while in the latter case g(θ̂)
has a gamma distribution. The table indicates the terms that combine to give g(θ̂)
according to equation (2).
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TED is not a panacea, in that the problem of calculating the analytic PDF for θ̂ is
transformed into the problem of finding the analytic PDF g[T (θ̂ ,θ∗,z)](t). This can be
done for simple PDFs such as those in Table 1. In the cases that are discussed in this
paper, the situation is further simplified because Ew[| j(θ ,w)||θ=θ̂

] = | j(θ ,w)||
θ=θ̂

.

Table 1 Examples of the use of TED by equation (2) (from [8]).

EM:- Normal N(δ ,η0
2), see equation (3)

Log likelihood l(θ ,z),θ = δ , see equation (14), set w to z

δ l(θ ,z)
δδ

= l′(θ ,z) =
1

η02 (∑zi− [nδ ])

T (θ̂ ,θ ∗) = 1
η02 (∑zi− [nδ ∗])

A. Ez[| j(θ ,z)||θ=θ̂
] = j(θ ,z) = n

η02

DGM:- Normal N(δ0,η0
2), see equation (3)

g[T (θ̂ ,θ∗,z)](t) =
1√

2π
n

η02

exp[
−η0

2

2n
[t− (

n
η02 (δ0−δ

∗)]2]

B. g[T (θ̂ ,θ∗=θ̂ ,z)](0) =
1√

2π
n

η02

exp[
−n

2η02 [(δ̂ −δ0)
2]

A x B. g(θ̂) =
1√

2π
η02

n

exp[
−n

2η02 [(δ̂ −δ0)
2] = N(δ0,

η0
2

n
)

DGM:- Negative Exponential
1
ν0

exp[
−1
ν0

z], z>0

g[T (θ̂ ,θ∗,z)](t) =
η0

2(η0
2t +nδ ∗)n−1

ν0n(n−1)!
exp[
−1
ν0

(η0
2t +nδ

∗)], (η0
2t +nδ ∗)>0

C. g[T (θ̂ ,θ∗=θ̂ ,z)](0) =
η0

2(nδ̂ )n−1

ν0n(n−1)!
exp[
−nδ̂

ν0
], δ̂>0

A x C. g(θ̂) =
(nn)(δ̂ n−1)

ν0n(n−1)!
.exp[

−nδ̂

ν0
], δ̂>0. This is Gamma( ν0

n )
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3 Densities of estimators for the lognormal distribution

In this section, results are described when the data are generated by the lognor-
mal distribution and estimated using the MLEs for the lognormal distribution. Most
of the results are already known but are redeveloped here using TED to give an
integrated approach.

3.1 The lognormal distribution

If a variable z,−∞ < z < ∞, has a normal distribution N(δ ,η2), with mean δ and
variance η2, then its PDF is,

g(z) =
1√

2πη2
exp[
−1
2η2 (z−δ )2], (3)

with −∞ < z < ∞.
If w = exp(z), 0 < w < ∞, use of a Jacobian gives the two parameter lognormal

PDF LN(µ,σ2) for w.

g(w) =
1√

2πσ2

1
w

exp[
−1
2σ2 (log(w)−µ)2], (4)

with 0 < w < ∞.
The two parameters can be gathered into a parameter vector ∆ T

(2x1) = (µ,σ2).

The expected value of w is exp(µ + σ2

2 ) [3]. The mean is a function of b as well as
of a in LN(a,b), unlike the case of N(a,b) where the mean a is not a function of b.

As an illustration, consider the distribution LN(−1.5,3). The expected value of
an observation w from this distribution is exp(−1.5+1.5) = 1. This is an asymmet-
ric PDF, as is shown in Fig. 1.

3.2 The maximum likelihood estimate of the sample mean

Here the MLE of the sample mean of a lognormal distribution is shown, assuming
that the variance is known.

For an iid sample, wi, i = 1, ...,n, from LN(µ,σ2), the log likelihood is,

l(∆ ,w) = log[
n

∏
i=1

g(wi)] (5)

=
−n
2

log(2πσ
2)−∑ log(wi)−

1
2σ2 ∑(log(wi)−µ)2,
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where summation signs apply to the sample members from 1 to n and ∆ T = (µ,σ2).
Reparameterise from ∆ T to θ T = (γ,σ2), where γ = exp(µ + σ2

2 ). This is the
mean of the lognormal variable that was given in Section 3.1. We do not bother to
parameterise the lognormal variance explicitly. In terms of the new parameters, the
log likelihood is

l(θ ,w) =
−n
2

log(2πσ
2)−∑ log(wi)−

1
2σ2 ∑(log(wi)+

σ2

2
− log(γ))2 (6)

In order to obtain the MLE for γ , the derivative of the log likelihood is taken wrt
γ .

δ l(θ ,w)
δγ

= l′(θ ,w) =
1

σ2γ
.∑(log(wi)+

σ2

2
− log(γ)) (7)

Assuming that σ2 is known, the mle γ̂ is given by l′(θ ,w)|γ=γ̂ = 0.

γ̂ = exp(
∑ log(wi)

n
+

σ2

2
) (8)
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Fig. 1 The lognormal PDF with mean γ = 1 and lognormal variance term σ2 = 3, which is written
in terms of LN(µ,σ2) as LN(−1.5,3), with γ = exp(µ + σ2

2 ). This is used for the illustrations in
Sections 3 and 4.
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3.3 The PDF of the MLE of the sample mean

Here the PDF of γ̂ is described, assuming that the variance term σ2 is known.
TED will be used to find g(γ̂|σ2).

For the lognormal distribution, equation (6) gives,

T (θ̂ ,θ ∗,w) = l′(θ ∗,w) =
1

σ2γ∗
.∑(log(wi)+

σ2

2n
− log(γ∗)) (9)

To develop g[T (θ̂ ,θ∗,w)](t), consider the DGM where log(wi) ∼ N(µ0,σ
2) =

N(log(γ0)− σ2

2n ,σ
2).

It follows from (9) that, T (θ̂ ,θ ∗,w)∼ N
[

n
σ2γ∗

log
(

γ0

γ∗

)
,

n
σ2γ∗2

]
.

g[T (θ̂ ,θ∗,w)](t) =

√
σ2γ∗√
2πn

exp

[
−σ2γ∗2

2n

[
t− n

σ2γ∗
log
(

γ0

γ∗

)]2
]

Following on from (7),

j(θ ,w) = l′′(θ ,w) =
−1

σ2γ2 .[n+∑(log(wi))+n
σ2

2
−n log(γ)]

To obtain Ew[| j(θ ,w)||θ=θ̂
], note that ∑(log(wi)) = nlog(γ̂)− n σ2

2 by equation
(8). So Ew[| j(θ ,w)||θ=θ̂

] = n
σ2 γ̂2

.

For g(γ̂|σ2), according to equation (2), set t = 0, γ∗ = γ̂ , in g[T (θ̂ ,θ∗,w)](t) and
multiply by n

σ2 γ̂2
.

g(γ̂|σ2) =

√
n√

2πσ2
.
1
γ̂

exp[
−n
2σ2 (log(γ̂)− log(γ0))

2]∼ LN(log(γ0),
σ2

n
) (10)

Comparison of expressions (10) and (4) shows that the mean of an iid sample
from a lognormal distribution with known σ2 has a lognormal distribution, with
mean exp(log(γ0)+

σ2

2n ) and a variance term σ2

n .
For the illustration that was introduced in 3.1, the middle diagram in Fig. 3 (be-

low) shows a comparison of the PDF specified by equation (10) and a probability
histogram derived from simulated data for samples of size n = 2 from LN(−1.5,3).
This distribution is LN(1,1.5) and has mean exp(0+ 1.5

2 ) = 2.12. Equivalence of
the analytic PDF to the simulations is indicated.
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3.4 The PDF of the associated sample variance σ̂2

By applying the derivative δ l(θ ,w)
δσ2 to equation (6), the MLE of σ2 is σ̂2 =

∑(log(wi)−µ̂)2

n . The analytic unconditional PDF g(σ̂2) can be found from equation
(3). Say that the true value of σ2 is σ0

2. Standard theory [12] shows that the quantity
nσ̂2

σ02 has a chi squared distribution with n− 1 degrees of freedom. So, by transfor-
mation,

g(σ̂2) =

n
σ02 [

nσ̂2

σ02 ]
n−1

2 −1.exp[−n
2

σ̂2

σ02 ]

2
n−1

2 Γ ( n−1
2 )

, (11)

where Γ () is the Gamma function.
Equation (11) indicates that g(σ̂2) does not have to be written as a conditional

PDF, because it is independent of γ0 and γ̂ . Fig. 2 shows this PDF for the illustration
with n = 2, again comparing the PDF specified by equation (11) with a probability
histogram derived from simulated sets of samples. Equivalence of the analytic PDF
to the simulations is indicated.
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Fig. 2 g(σ̂2) for LN(−1.5,3) with n = 2. Histogram of one million sample estimates of σ̂2. The
analytic curve (11) is included as a solid line.
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3.5 The conditional PDF g(γ̂|σ̂2)

Here the approach in Section 3.3 is extended to obtain the PDF of the sample
mean γ̂ when it is conditional on the sample variance σ̂2. TED will be used to find
g(γ̂|σ̂2), that is conditional on the estimate σ̂2 from the same data set.

Say that the underlying parameters are γ0 and σ0
2. The log likelihood (6) for

the estimation model is now written with σ2 = σ̂2, while for the DGM the same
likelihood is written with γ = γ0 and σ2 = σ2

0. The conditional MLE is derived in
an analogous way to equation (8).

γ̂|σ̂2 = exp(
∑ log(wi)

n
+

σ̂2

2
)

T is now obtained as in equation (9).

T (θ̂ ,θ ∗,w) =
1

σ̂2γ∗
.∑(log(wi)+

σ̂2

2
− log(γ∗))

To find g[T (θ̂ ,θ∗,w)](t), the DGM gives log(wi) ∼ N(µ0,σ0
2) = N(log(γ0)−

σ2
0

2 ,σ2
0).

It follows that,

T (θ̂ ,θ ∗,w)∼ N(
n

σ̂2γ∗
[log(

γ0

γ∗
)+

σ̂2−σ0
2

2
],

nσ0
2

(σ̂2)2γ∗2
)

So,

g[T (θ̂ ,θ∗,w)](t) =
σ̂2γ∗√
2πnσ02

exp[
−(σ̂2)2γ∗2

2nσ02 [t− [
n

σ̂2γ∗
(log(γ0)−

σ0
2

2
)+

n
γ∗

(
1
2
− log(γ∗)

σ̂2
)]]2]

The multiplicative expectation term is Ew[| j(θ ,w)||θ=θ̂
,σ2 = σ̂2] = n

σ̂2 γ̂2
.

For g(γ̂|σ̂2) according to equation (2), set t = 0, γ∗ = γ̂ , in g[T (θ̂ ,θ∗,w)](t) and
multiply by n

σ̂2 γ̂2
.

g(γ̂|σ̂2) =

√
n√

2πσ02
.
1
γ̂

exp[
−n

2σ02 (log(γ̂)− [log(γ0)+
σ̂2−σ0

2

2
])2]∼

LN(log(γ0)+
σ̂2−σ0

2

2
,

σ0
2

n
) (12)
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Fig. 3 g(γ̂|σ̂2) for LN(−1.5,3) with n = 2. Histograms of one million sample estimates. The
analytic curves (12) are included as solid lines. a) σ̂2 = 2.25; b) σ̂2 = 3; c) σ̂2 = 4.
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Equation (12) shows that the mean of an iid sample from a lognormal distribution
that is conditional on σ̂2 has a lognormal distribution that depends on both σ0

2 and
σ̂2. The mean is exp(log(γ0)+

σ̂2

2n ), while the variance term σ0
2

n does not depend on
σ̂2. Expression (12) is a generalisation of equation (10).

Figs. 3a to 3c show three variants of g(γ̂|σ̂2) for the illustration (taking n =

2 from LN(-1.5, 3)), corresponding to conditional values for σ̂2 of 2.25, 3 and 4
respectively. The data have been generated using σ0

2 = 3. Agreement of the analytic
PDF with the histogram only occurs when σ̂2 = σ0

2 = 3 in the middle diagram (as
was discussed in Section 3.3).

3.6 The joint PDF g(γ̂, σ̂2)

Here the results of Sections 3.4 and 3.5 are combined to find the joint PDF of γ̂

and σ̂2 from a sample.
The previous section 3.5 showed that, for data sets from the lognormal distribu-

tion, in the PDF g(γ̂|σ̂2) there is a dependency between γ̂ and σ̂2 that needs to be
considered. σ̂2 will not be the same over several data samples, so the conditional
PDF g(γ̂| ˆσ2) may be difficult to interpret. The joint PDF of γ̂ and σ̂2 is of inter-
est in order to better understand the consequences of the model. This is given by
multiplying the expressions (11) and (12).

g(γ̂, σ̂2) = g(σ̂2).g(γ̂| ˆσ2) =

√
nn√

2πσ02 γ̂σ02

2
n−1

2 Γ ( n−1
2 )

[
nσ̂2

σ02

] n−1
2 −1

.exp

−n
2

(
σ̂2

σ02 +
1

σ02

[
log(γ̂)− log(γ0)−

σ0
2− σ̂2

2

])2
 (13)

Figure 4 shows this bivariate PDF for the illustration, using simulated data sets
(left plot) and the analytic formula (right plot). Agreement of the PDFs is indicated.

For n = 2, g(γ̂, σ̂2) descends in both directions with no observable mode. Chi-
squared distributions with 1 or 2 degrees of freedom have no mode [3]. This has an
effect on the associated PDF g(γ̂, σ̂2) when n = 2. Fig. 5 shows that there is a mode
for the bivariate PDF with the same model and parameters when n = 6, again by
simulations (left plot) and by the analytic formula (right plot).
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Fig. 4 g(γ̂, σ̂2) for LN(−1.5,3) with n = 2. a):- based on a histogram of ten million sample esti-
mates; b):- using the analytic formula (13).

Fig. 5 g(γ̂, σ̂2) for LN(−1.5,3) with n = 6. a) based on a histogram of ten million sample esti-
mates; b) using the analytic formula (13).

4 Fitting the normal distribution to lognormal data

The consequences will now be described of wrongly using the normal distribu-
tion as EM when the DGM is the lognormal distribution. The DGM will be written
LN(µ0,σ0

2) and the EM will be written N(δ ,η2), as in Equation (3) but now in
terms of g(w) rather than g(z).
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4.1 The conditional PDF g(δ̂ |η̂2)

Here the PDF of the sample mean will be developed when it is conditional on the
sample variance.

For the normal distribution, the log likelihood for δ , conditional on η̂2, from
equation (3) is

l(δ ,w|η̂2) =−nlog(
√

2πη̂2)− 1

2η̂2 ∑((wi−δ )2) (14)

Differentiating by δ , the MLE for a normal EM is the sample mean δ̂ = Σwi
n .

The exact distribution of δ̂ is not known and unfortunately TED does not help here
because it also specifies the need to develop an expression for the distribution of
∑wi.

Several methods are available to approximate the distribution. One way is to ap-
proximate g(δ̂ |η̂2) by a transformed version of the lognormal distribution
LN(log(γ0),

σ2

n ) for g(γ̂|σ2). Expression (10) for the distribution of the MLE γ̂ un-
der the lognormal EM cannot be used directly, because this is for the geometric
mean with a correction as at (8), that does not have the same distribution as the
arithmetic mean δ̂ . The difference can be seen with simulation results for the illus-
tration using the same DGM by comparing the distributions shown in Fig. 6 and Fig.
3b for n = 2. The distribution for δ̂ is shifted to the left compared to the one for γ̂ .

Fig. 6 g(δ̂ |σ2) for the arithmetic mean on data from LN(−1.5,3) with n = 2. Histogram of one
million sample estimates. The analytic curve (15) is included as a solid line. The dashed line shows
the approximate analytic density LN(log(γ0)− σ2

n , σ2

n ).
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Relating to the lognormal distribution in equation (4), assume that δ̂ estimates
exp(µ0) while γ̂ estimates exp(µ0).exp(σ0

2

2n ). The choice of a lognormal distribution

g(δ̂ |σ0
2) ∼ LN(log(γ0)− σ0

2

n , σ0
2

n ) preserves the same variance σ0
2

n as in g(γ̂|σ0
2)

at (10), and gives the mean exp(log(γ0)− σ0
2

2n ). This is consistent with γ̂ estimat-

ing exp(µ0).exp(σ0
2

2n ) and δ̂ estimating exp(µ0). However the dashed line in Fig. 6
shows that this gives only an approximate fit when n = 2. It was also verified that
it gives only an approximate fit to simulations when n = 6 with the same parameter
values.

Empirical investigation suggests that the following distribution works better for
n = 2.

g(δ̂ |η̂2) = g(δ̂ 2|σ0
2)∼ LN(log(γ0)−

σ0
2

2
√

n
,

σ0
2

n
) (15)

This gives the mean exp(log(γ0)− σ0
2

2 ( 1√
n −

1
n )), which is exp(0− 3

2 (
1√
2
− 1

2 )) =

0.733 for the illustration with n = 2. The solid analytic line in Fig. 6 according to
equation (15) closely follows the shape of the histogram. Unlike equation (12) for
g(γ̂|σ̂2), equation (15) is not directly dependent on its conditional argument σ̂2 and
can be written as g(δ̂ ).

4.2 The pdf of the misfitted sample variance

Here some steps are shown towards developing the PDF of the normal EM sam-
ple variance η̂2. As in Section 3.6, the intention is then to seek to multiply g(η̂2) by
g(δ̂ |η̂2) = g(δ̂ ) from Section 4.1, in order to determine the joint PDF g(δ̂ , η̂2).

The log likelihood conditional on δ is written in a similar fashion to equation
(14).

l(η2,w|δ ) =−nlog(
√

2πη2)− 1
2η2 ∑((wi−δ )2)

Differentiating by η2,

l′(η2,w|δ ) = −n
2η2 +

1
2(η2)2 ∑((wi−δ )2)

From this, the MLE is η̂2 = 1
n ∑((wi−δ )2) = Σri

n , where ri = (wi−δ )2.
Unlike the situation in Section 3.4, the PDF for η̂2 depends on γ0 as well as

σ0
2. Consider the case n = 1. Since w∼ LN(µ0,σ0

2), with µ0 = log(γ0)− σ0
2

2 , the

quantity vi =
(log(wi)−µ0)

2

σ02 follows a chi-square distribution on 1 degree of freedom.
That is,
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g(vi) =
1√
2π

.exp[
−vi

2
].vi
− 1

2 ,vi>0

But the analyst assumes that the data follows a normal distribution as EM
N(δ ,η2). So he believes that (wi−δ )2

η02 = ri
η02 follows a chi-square distribution on

1 degree of freedom. However the actual distribution g(ri) is obtained by writing vi

as [log(
√

ri+δ )−µ0]
2

σ02 .

In order to transform the chi-square PDF for vi to the PDF for ri, use the Jacobian,

|dvi

dri
|= |

log(
√

ri +δ )−µ0

σ02(
√

ri +δ )
√

ri
|

Hence,

g(ri) =
1√

2πσ02(
√

ri +δ )
√

ri
.exp(

−1
2σ02 .[log(

√
ri +δ )−µ0]

2) (16)

Following (15), set δ = exp(log(γ0)− ( σ0
2

2
√

n )). When n = 1, Fig. 7 shows this for

σ0
2 = 3, δ = exp(µ0) = exp(0− 3

2 ) =−1.5. The left plot shows simulations and the
right plot shows g(ri) according to equation (16). Agreement of these plots seems
likely. The distribution has a long upper tail.

g(ri) in equation (16) can be converted to an analytic PDF for n = 2 using com-
putational convolution. The PDF g(η̂2) for the MLE η̂2 = 1

2 ∑((wi− δ )2) = 1
2 ∑ri

is as follows.

g(η̂2) = 2g(∑ri(η̂2)) = 2
∫

∞

0
g(si)(2η̂2− si)dsi

Simulations can also be done by adding two appropriate random numbers for
each sample member. The resulting PDFs are shown in Fig. 8, with the simulations
on the left and the analytic PDF on the right part of the figure.

There are some difficulties emulating the behaviour at the lower bound with the
analytic method when compared to the simulations. No attempt has yet been made
to expand this approach to higher values of n.

4.3 The joint PDF g(δ̂ , η̂2)

In this Section, the joint PDF of δ̂ and η̂2 from a sample is shown. The two-way
plots that represent g(δ̂ , η̂2) are shown for simulations only in Fig. 9, for n = 2 and
for n= 6. There is a very long upper tail for the variance estimates, most prominently
for n = 2 with its ”torpedo trail”, but also with a more extended and diffuse ”hill”
when n = 6.
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ri

g(ri )

ri

g(ri )

Fig. 7 g(ri) for the DGM LN(−1.5,3) with n = 1. a) based on a histogram of ten million simula-
tions; b) using formula (16).

g(    )
g(    )

Fig. 8 g(η̂2) for the DGM LN(−1.5,3) with n = 2. a) based on a histogram of ten million simu-
lations; b) using computational convolution from the formula (16).

Fig. 9 can be compared with Fig. 4 and Fig. 5 for the correct lognormal EM. But
a direct comparison of the spread of σ̂2 with that of η̂2 needs to take account of the
different scales involved for the variance terms.

4.4 Expected value of the misfitted normal variance

Given the difficulties in constructing the analytical form of the two way plots for
g(δ̂ , η̂2), in this section another analytical approach is taken for the case n = 2.

Attention will be restricted to the effects of the wrong estimation model on the
expected value of the variance term E[η̂2] = E[∑ri]

2 , when n = 2. This is the same as
E[ri] due to independence of the sample members. Say that E[ri] = E[r].

From equation (16),

E[r] =
1√

2πσ02
.
∫

∞

0

s
(
√

s+δ )
√

s
.exp(− 1

2σ02 .[log(
√

s+δ )−µ0]
2)ds
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Fig. 9 g(δ̂ , η̂2) for the numerical illustration with misspecification, based on a histogram of ten
million sample estimates. a):- n = 2; b):- n = 6.

By making the substitution u =
√

s+δ , using the positive square root only, this
can be written as follows.

E[r] =
1√

2πσ02
.
∫

∞

δ

2(u−δ )2.
1
u
.exp(

−1
2σ02 .[log(u)−µ0]

2))du (17)

Let Eδ [m(u)(µ,σ0
2)] indicate the incomplete expectation of m(u) under LN(µ0,σ0

2),
where u≥ δ . Equation (17) can be written as,

E[r] = Eδ [2(u−δ )2(µ0,σ0
2)]

The following expression for the incomplete moments of the lognormal distribu-
tion will be used [2] [13].

Eδ [u
k(p,q)] =

∫
∞

δ

xkLNx(p,q)dx = 1−µkΦ(
log(δ )− p− kq√

r
) (18)

Here k is the order of the incomplete moment, Φ is the cumulative distribution
function of the standard normal distribution N(0,1) (from−∞ to the argument), and
µk is the corresponding complete moment exp[kp+ k2

2 q].
Equation (17) can be split into three terms of this type.

Eδ [2(u−δ )2(µ0,σ0
2)]

= Eδ [2u2(µ0,σ0
2)]−Eδ [4uδ (µ0,σ0

2)]+Eδ [2δ
2(µ0,σ0

2)] (19)

The evaluated expression is found by using (18) and (19).
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E[η̂2] = E[r] = 2exp[2µ0 +2σ0
2]

[
1−Φ

(
log(δ )−µ0−2σ0

2

√
σ0

2

)]

−4δ .exp
[

µ0 +
σ0

2

2

][
1−Φ

(
log(δ )−µ0−σ0

2

√
σ0

2

)]
(20)

+2δ
2.

[
1−Φ

(
log(δ )−µ0
√

σ0
2

)]

E[η̂2] is the expectation of the estimate of the variance on the incorrect normal EM,
although the distribution of η̂2 is asymmetric as can be seen in Fig. 8.

Under the running example with γ0 = 1, σ0
2 = 3 and n = 2, the 95 percent range

for γ̂ under the cumulative distribution function (CDF) from the correct lognormal
EM, which is g(γ̂|σ0

2) as in Equation (10), was obtained numerically as approxi-
mately (0.064, 14.64). The exact 95 percent range for δ̂ under the CDF from the
incorrect normal EM, which is g(δ̂ |η̂2) as in Equation (15), was obtained numeri-
cally as (0.019, 4.93).

For n = 1, the lognormal density (15) has µ0 = log(γ0)− σ2

2 = 0− 3
2 = −1.5.

Setting δ to exp(−σ2

2n )γ0 = exp(−3
2 ).1 = 0.2231, this gives

√
E[η̂2] = 1.3597 by

equation (20). On the normal EM, normal inference gives expected 95 percent con-

fidence limits as δ̂ +/- 1.96
√

E[η̂2]/2, which are (-1.66, 2.11). These limits for δ̂

would be wider in case Student’s t distribution based limits were to be used because
of the small sample size. Since the negative value of the lower limit is unrealistic,
in the next section only one sided upper range limits and confidence limits will be
considered.

5 Example of numbers of employees data

Here the above results are illustrated on a set of survey data about numbers of
employees in companies that made applications for patents at the European Patent
Office (EPO) in 2015 [14]. This distribution is asymmetric. Fig. 10 shows the data.
The mean is estimated in the survey report as 2174 employees, while the median
is 95 employees. Based on this and the frequency classes in the figure, a lognormal
distribution was fitted with γ0 = 2174, σ0

2 = 6.1815 and µ0 = 4.59.
Assuming that this lognormal distribution describes the population, consider de-

signing an experiment where data will be collected from a random sample of n = 2
companies, say those in some particular country or industry. Fig. 11 shows the joint
PDF g(γ̂, σ̂2) that was obtained analytically. It also shows the PDF for n = 6.

Fig. 12 shows the bivariate PDF g(δ̂ , η̂2) that is found by using the wrong normal
estimation model by simulations.
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Fig. 10 The frequency distribution of numbers of employees per applicant for patents from sur-
vey data [14]. Note that this representation gives equal weight to the grouped classes and is not
arithmetic.

Fig. 11 g(γ̂, σ̂2) for the model for numbers of employees. a):- n = 2; b):- n = 6.
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Fig. 12 g(δ̂ , η̂2) for the model for numbers of employees. a):- n = 2; b):- n = 6.

For n = 2, the expected one sided upper range limit for 95 percent of the sam-
ple means using the correct lognormal EM, under g(γ̂|σ0

2) as in Equation (10),
was obtained numerically as 73019. As was discussed in Section 4.4, for usage in
equation (20) δ can be set to exp(−6.1815

2 )× 2174 = 98.9. This value of δ gives

µ0 = log(δ )− σ2

2 = 4.593− 6.1815
2 = 1.503. The expected one sided upper 95 per-

cent range limit for δ̂ under the CDF from the corresponding lognormal distribution
(15) was obtained numerically as 5241. The normal variance estimate, E[η̂2] from
equation (20), has a square root of 3069, giving an expected 95 percent one sided
upper confidence limit of 98.85+ 1.65× 3069/

√
2, which is 3680. This would be

higher in case a Student’s t distribution based limit was used. See Fig. 13.
There are other ways to calculate an expected 95 percent one sided upper confi-

dence limit for the mean. The variance of the lognormal distribution is [exp(σ2)−
1]exp(2µ +σ2) [1]. With µ = 4.595 and σ2 = 6.1815, the square root of this vari-
ance is 2172, which suggests a one sided upper range limit of only 2633, although
this could be made larger by using a Student’s t distribution based limit.

6 Conclusions

The above approaches demonstrate the effect of misspecifying the normal model
for estimation on data that were generated by the lognormal distribution. This can
be useful at the experimental design stage where model robustness issues may be of
concern. While the context of a data set may sometimes give knowledge about the
DGM, in other cases this will not be known. Clearly the distribution of the MLE of
the lognormal mean can differ considerably from that of the arithmetic mean with
consequences for the statistical inferences from a sample. Inferences that are made
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Range under the CDF

Expected confidence interval for Normal EM

Expected confidence interval for Lognormal variance with normal approximation
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Fig. 13 Ranges for the mean up to one sided 95 percent limits for the employees data (with n = 2),
by three methods. The distribution (15) is also shown, with the vertical dotted line representing δ .

about the population mean may be more than trivially different under the alternative
estimation models.

The analytic results that were obtained give a better handle from which to make
calculations than having to depend on simulation results. However neither the prag-
matic approximation for the density of the misspecified normal mean nor the ana-
lytic method to obtain the density of the MLE for the misspecified normal variance
by convolutions have yet been fully developed. The suggested technique in Section
4.4, to calculate E[η̂2] under misspecification, has some promise.

These approaches should be extended to the case n > 2. It would also be interest-
ing to extend the techniques to other distributions, in particular the gamma distribu-
tion where the shape is explicitly parameterised. The behaviour of estimators other
than the MLE could be considered as well.

A further application with the employees data could be to compare the distribu-
tions from successive surveys to see whether they differ significantly. In biology,
underlying mechanisms that involve multiplicative factors can often justify use of
the lognormal distribution for estimation [15]. Even when a data set is only slightly
asymmetric, the underlying DGM may be better described by a lognormal distribu-
tion than by a normal distribution.
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