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Abstract In this work, we present a numerical scheme for the approximate solutions
of a 2D crawling cell migration problem. The model, defined on a non-deformable
discoidal domain, consists in a Darcy fluid problem coupled with a Poisson prob-
lem and a reaction-advection-diffusion problem. Moreover, the advection velocity
depends on boundary values, making the problem nonlinear and non local. For a dis-
coidal domain, numerical solutions can be obtained using the finite volume method
on the polar formulation of the model. Simulations show that different migration
behaviours can be captured.
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1 Introduction

Cell migration ensures fundamental functions in the body (embryogenesis, immune
system), but is also involved in the development of pathologies such as tumor metas-
tasis, arising large research efforts. However, the responsible intracellular mecha-
nisms involve multiscale interaction in time and space, so that modelling cell mi-
gration is challenging and produces interesting problems to study.

For 2D cells crawling on a surface, the motion is friction-based and results from
the activity of the so-called actin cytoskeleton, that is a dynamics mesh of actin
filaments. They are polar: they polymerize at one end and depolymerize at the other
end, under the molecular regulation of signalling loops. Overall, the actin mesh can
be approximated by an active fluid in our setting (Joanny and Prost, 2009; Kruse
et al., 2005).

The mesh grows preferentially at the cell membrane, and shrinks inside the cell
body, generating inward actin flows from the membrane. Its mechanical connec-
tion to the adhesive substrate generates the friction forces responsible for the cell’s
displacement.

Modelling this process is a difficult task, because of the large time and space
scales, and also because of the large number of effectors of the dynamics. Follow-
ing key physical ideas of Blanch-Mercader and Casademunt (2013); Maiuri et al.
(2015), we proposed in Etchegaray (2016); Etchegaray et al. (2017a,b) a minimal
multiscale model for 2D crawling migration, that we recall now.

The cell domain is a non deformable disc Ω , and the problem is formulated in the
cell’s frame of reference (the domain does not move). First, the actin cytoskeleton
is approximated by a Darcy fluid (Blanch-Mercader and Casademunt, 2013), and
its dynamics in a crawling situation is modelled by a Poisson problem on the fluid
pressure (Etchegaray et al., 2017b). More precisely, for u : R+×Ω → R2 the fluid
velocity, p : R+×Ω → R its pressure, we have{

−∆ p(t,x) =−kd in Ω ,

p(t,x) = kp(t,x) on ∂Ω ,
(1)

for kd the actin depolymerization rate, and kp : R+×Ω → R the polymerization
function rate at the boundary. The fluid velocity writes

u(t,x) =−∇p(t,x)−v(t) on Ω , (2)

with for γ ∈ R+ the domain velocity

v(t) = γ

∫
Ω

∇p(t,x)dx = γ

∫
∂Ω

p(t,x)nx dx , (3)

for nx the unit normal vector to ∂Ω at point x ∈ ∂Ω0.
These equations show that the actin polymerization at the boundary and depoly-

merization inside the domain may drive a pressure gradient leading to the cell mo-
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tion. Note that the dynamics therefore arises from the activity at the boundary, and
that the cell velocity is nonlocal.

Now, the interaction with the molecular scale consists in studying the dynamics
of a molecular inhibitor to polymerization. The molecules diffuse freely inside the
cell in a inactive form. They may bind actin filaments and be carryied by their flow.
Moreover, if activated at the cell membrane, they become able to locally inhibit actin
polymerization. Write c : R+×Ω → R the concentration in an inactive form, and
µ : R+×∂Ω → R the activated concentration at the boundary. Then,

→ the inactive molecules follow an advection-diffusion dynamics with advection
velocity u,

→ there is an exchange dynamics on ∂Ω between active and inactive forms,
→ kp is a decreasing function of µ .

For D the diffusion coefficient, and kon/off the activation/desactivation rates, the
corresponding problem writes


∂tc(t,x)+div (c(t,x)u(t,x)−D∇c(t,x)) = 0 in Ω ,

(D∇c(t,x)− c(t,x)u(t,x)) ·nx =−konc(t,x)+ koffµ(t,x) on ∂Ω ,
∂

∂ t µ(t,x) = konc(t,x)− koffµ(t,x) on ∂Ω .

(4)

Note that the boundary condition ensures mass conservation:

d
dt

(∫
Ω

c(t,x)dx+
∫

∂Ω

µ(t,x)dx
)
= 0 . (5)

Some remarks can be made to highlight the difficulties in the analysis of the
model. The fluid velocity rewrites

u(t,x) =−∇p(t,x)− γ

∫
∂Ω

kp(t,x)nx dx . (6)

We notice that this expression depends on the concentration in activated molecules
µ from the pressure boundary term kp, so that the reaction-advection-diffusion prob-
lem is nonlinear. Moreover, the integral term makes it also non-local.

The corresponding 1D model in a special case without activation at the boundary
and for a linear kp writes as a nonlinear non-local advection-diffusion problem, and
has been studied in Etchegaray et al. (2017b). The analysis shows the existence of
different asymptotic solutions, describing both motile and non motile behaviours.
Moreover, for a subcritical mass of molecules, the global weak existence of solu-
tions is established, along with their convergence to a non motile gaussian profile
at explicit rate. Finally, under conditions on the initial condition, it is shown that
solutions blow up in finite time.

Since the model carries non trivial behaviours, computing numerical solutions is
of particular interest. In the following, we develop a finite volume method for the
polar formulation of the problem (1)-(2)-(4), since the domain Ω is a disc.
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2 Numerical method

We introduce now the finite volume discretization of the model. We assume that the
cytokeleton domain is an annulus Ω = B(0,R)\B(0,Rmin)⊂ R2, where B(0,Rmin)
accounts for the nucleus. We consider a zero-flux boundary condition for the molec-
ular concentration on C(0,Rmin), the circle of center (0,0) and radius Rmin. As a
consequence, it will be natural to study the problem in polar coordinates.

2.1 Polar formulation

Reaction-advection-diffusion problem

Let x = (r cos(θ),r sin(θ)) ∈ Ω , and c̃ (similarly µ̃) the polar function such that
1
r c̃(t,r,θ)= c(t,x) with (r,θ)∈ [Rmin,R]×R/2πZ. Then, the problem on the molec-
ular specie writes

∂t c̃(t,r,θ) = ∂r

(
Dr∂r

(
c̃(t,r,θ)

r

)
− c̃(t,r,θ)ur(t,r,θ)

)
+∂θ

(
1
r2 (D∂θ c̃(t,r,θ)− c̃(t,r,θ)uθ (t,r,θ))

)
in Ω , (7)

koffµ̃(t,R,θ)− konc̃(t,R,θ) = DR∂r

(
c̃(t,R,θ)

R

)
− c̃(t,R,θ)ur(t,R,θ), on C(0,R) , (8)

0 = DRmin∂r

(
c̃(t,Rmin,θ)

Rmin

)
− c̃(t,Rmin,θ)ur(t,Rmin,θ), on C(0,Rmin) , (9)

∂t µ̃(t,R,θ) = konc̃(t,R,θ)− koffµ̃(t,R,θ) , on C(0,R) . (10)

Poisson problem on p

For the polymerization function kp, let us choose a simple form, that is

kp(t,x) = [1−δ µ(t,x)]+ , (11)

with δ > 0 and x ∈ ∂Ω .
The pressure p is solution of the following problem:
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−∆ p(t,x) =−kd , in Ω , (12)
p(t,x) = [1−δ µ(t,x)]+, on C(0,R) , (13)

p(t,x) = 0, on C(0,Rmin) , (14)

where the pressure condition on C(0,Rmin) is arbitrary, and fix the pressure values.
Let us consider these equations in polar coordinates with 1

r p̃(t,r,θ) = p(t,x) for
(r,θ) ∈ [Rmin,R]×R/2πZ. We have

−∂r

(
r∂r

(
p̃(r,θ)

r

))
− 1

r2 ∂θθ p̃(r,θ) =−kd r, in Ω , (15)

p̃(t,R,θ) = R
[

1−δ
µ̃(t,R,θ)

R

]
+

on C(0,R), (16)

p̃(t,Rmin,θ) = 0 on C(0,Rmin). (17)

2.2 Discretization

Let tn = n∆ t be the time discretization, and {r j = Rmin+( j− 1
2 )∆r, j ∈ {1, ...,Nr}}

the space discretization of the bounded interval [Rmin,R], such that rNr+
1
2
= R,

(therefore NR = R−Rmin
∆r ). Similarly, {θk = k ∆θ ,k ∈ {1, ...,Nθ}} is the space dis-

cretization of the periodic interval R/2πZ. We introduce the control volumes
W( j,k) ⊂ R2 and Vk ⊂ R/2πZ with

Vk =
(

θk− 1
2
,θk+ 1

2

)
,

W( j,k) =
(

r j− 1
2
,r j+ 1

2

)
×Vk .

Let c̃n
( j,k) (resp. µ̃n

k ) be the approximated value of the exact solution c̃(tn,r j,θk)

(resp. µ̃(tn,θk)), and p̃n
( j,k) be the approximated value of the exact solution p̃(tn,r j,θk):

c̃n
( j,k) '

1
∆r∆θ

∫∫
W ( j,k)

c̃(tn,r,θ)drdθ ,

µ̃
n
k '

1
∆θ

∫
Vk

µ̃(tn,θ)dθ ,

p̃n
( j,k) '

1
∆r∆θ

∫∫
W ( j,k)

p̃(tn,r,θ)drdθ .

Moreover, we write un and vn the corresponding discretized velocity functions at
time tn.

The resolution is made as follows: for n≥ 0, knowing (c̃n, µ̃n) allows to compute
p̃n, then (un,vn). Finally, (c̃n+1, µ̃n+1) is computed using un, and so on.
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Problem on p̃

The pressure problem is time-dependent because of the Dirichlet boundary condi-
tion. Therefore, it is solved explicitly in time. Write F for the numerical flux. Then,
we have the following scheme for equation (15): for ( j,k)∈{1, ...,Nr}×{1, ...,Nθ},

−

(
F( j+ 1

2 ,k)
−F( j− 1

2 ,k)

∆r
+

F( j,k+ 1
2 )
−F( j,k− 1

2 )

∆θ

)
=−kdr j .

The finite volume numerical fluxes are defined by

F( j+ 1
2 ,k)

= r j+ 1
2

p̃( j+1,k)
r j+1

− p̃( j,k)
r j

∆r
, F( j− 1

2 ,k)
= r j− 1

2

p̃( j,k)
r j
− p̃( j−1,k)

r j−1

∆r
,

F( j,k+ 1
2 )
=

1
r2

j

p̃( j,k+1)− p̃( j,k)

∆θ
, F( j,k− 1

2 )
=

1
r2

j

p̃( j,k)− p̃( j,k−1)

∆θ
.

The Dirichlet boundary conditions (16)-(17) are imposed using ghost values
p̃(0,k) and p̃n

(Nr+1,k). For k ∈ {1, ...,Nθ},

F( 1
2 ,k)

=
r 1

2

r1

p̃(1,k)
∆r

,

since p̃(0,k) = 0. Now, p̃n
(Nr+1,k) = rNr

[
1−δ

µ̃n
(Nr ,k)
rNr

]
+

, the corresponding flux

writes

F(Nr+
1
2 ,k)

= rNr+
1
2

rNr
rNr+1

(
1−δ

µ̃n
(Nr ,k)
rNr

)
− p̃(Nr ,k)

rNr

∆r
.

Therefore, the term
rNr r

Nr+ 1
2

rNr+1∆r

[
1−δ

µ̃n
(Nr ,k)
rNr

]
+

will be included in the right hand

side of the matricial problem.
Similarly, the periodic conditions impose for j ∈ {1, ...,Nr},

F( j,Nθ+
1
2 )
= F( j, 1

2 )
=

1
r2

j

p̃( j,1)− p̃( j,Nθ )

∆θ
.

As a consequence, we write the corresponding system, where the terms in bold
account for the boundary conditions. Note also that each equation is written for
k ∈ {1, ...,Nθ} with the convention that if k = 1, then k− 1 = Nθ and k− 1

2 = 1
2 .

Similarly, if k = Nθ , then k+1 = 1 and k+ 1
2 = 1

2 .
For j = 1, we write
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1
∆r2

[
r 3

2

(
p̃(2,k)

r2
−

p̃(1,k)
r1

)
−

r 1
2

r1
p̃(1,k)

]
+

p̃(1,k+1)−2 p̃(1,k)+ p̃(1,k−1)

r2
1∆θ 2 = kdr1 .

(18)

or equivalently

1
∆r2

[ r 1
2
+ r 3

2

r1
p̃(1,k)−

r 3
2

r2
p̃(2,k)

]
+
−p̃(1,k−1)+2 p̃(1,k)− p̃(1,k+1)

r2
1∆θ 2 =−kdr1 . (19)

For j ∈ {2, ...,Nθ −1}, we write for k ∈ {1, ...,Nθ},

1
∆r2

[
r j+ 1

2

(
p̃( j+1,k)

r j+1
−

p̃( j,k)

r j

)
− r j− 1

2

(
p̃( j,k)

r j
−

p̃( j−1,k)

r j−1

)]
+

p̃( j,k+1)−2 p̃( j,k)+ p̃( j,k−1)

r2
j ∆θ 2 = kdr j . (20)

or equivalently

1
∆r2

[
−

r j− 1
2

r j−1
p̃( j−1,k)+

r j+ 1
2
+ r j− 1

2

r j
p̃( j,k)−

r j+ 1
2

r j+1
p̃( j+1,k)

]
+
−p̃( j,k−1)+2p̃( j,k)− p̃( j,k+1)

r2
j ∆θ 2 =−kdr j . (21)

Finally, for j = Nr, we write for k ∈ {1, ...,Nθ},

1
∆r2

[
−

rNr+
1
2

rNr
p̃(Nr,k)− rNr− 1

2

(
p̃(Nr ,k)

rNr

−
p̃(Nr−1,k)

rNr−1

)]
+

p̃(Nr ,k+1)−2 p̃(Nr ,k)+ p̃(Nr ,k−1)

r2
j ∆θ 2 = kdrNr −

rNr rNr+
1
2

rNr+1∆r

[
1−δ

µ̃n
Nr ,k

rNr

]
+

. (22)

or equivalently

1
∆r2

[
−

rNr− 1
2

rNr−1
p̃(Nr−1,k)+

rNr− 1
2
+ rNr+

1
2

rNr

p̃(Nr ,k)

]
+
−p̃(Nr ,k−1)+2 p̃(Nr ,k)− p̃(Nr ,k+1)

r2
j ∆θ 2 =−kdrNr +

rNr rNr+
1
2

rNr+1∆r

[
1−δ

µ̃n
Nr ,k

rNr

]
, (23)

Let us now write the corresponding matricial problem. We define the column
vector P by P(k+( j−1)Nθ ) = p̃( j,k) with ( j,k) ∈ {1, ...,Nr}×{1, ...,Nθ}:

P =
(

p̃(1,1) . . . p̃(1,Nθ ) p̃(2,1) . . . p̃(2,Nθ ) . . . p̃(Nr ,Nθ )

)T
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For ∆r = ∆θ the stiffness matrix Ap is defined by

Ap =



r1/2+r1+1/2
r1

INθ
−

r
1+ 1

2
r2

INθ

. . . . . . . . .

−
r

j− 1
2

r j−1
INθ

r
j− 1

2
+r

j+ 1
2

r j
INθ

−
r

j+ 1
2

r j+1
INθ

. . . . . . . . .

−
r
Nr− 1

2
rNr−1

INθ

r
Nr− 1

2
+r

Nr+ 1
2

rNr
INθ

+


+

+



1
r2
1
A

1
r2
2
A

. . .
1

r2
Nr−1

A
1

r2
Nr

A


, (24)

where the second matrix accounts for the angular diffusion, with A ∈ MNθ
(R) the

classical diffusion matrix with periodic flux boundary conditions:

A =



2 −1 −1

−1 2
. . .

. . . . . . . . .
. . . 2 −1

−1 −1 2


. (25)

The right-hand side in (15) and the flux boundary condition (16) on C(0,Rmax)
imposes this right hand side column vector of length Nr Nθ :

Rn
p =−kd


(r1)k

...
(r j)k

...
(rNr)k

+
rNr rNr+

1
2

rNr+1∆r


0
...
0[

1−δ
µ̃n

Nr ,k
rNr

]
+

 .

We use a standard numerical method to invert the symmetric positive definite
matrix 1

∆r2 Ap and then resolve at each time step

P =

(
1

∆r2 Ap

)−1

Rn
p.
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Equations for u and v

The velocities u and v depend on the pressure p, which is obtained through a time
explicit scheme. Therefore, they also depend explicitly in time on the concentration.

The equation on v in polar coordinates writes

v(t) = γ

∫ 2π

0

[
1−δ

µ̃(t,R,θ)
R

]
+

ndθ . (26)

We compute numerically the velocity in cartesian coordinates vn
cart := (vn

x ,v
n
y)

T :

vn
x = γ∆θ

Nθ

∑
k=1

[
1−δ

µ̃n
(Nr ,k)

R

]
+

cos(θk) , (27)

vn
y = γ∆θ

Nθ

∑
k=1

[
1−δ

µ̃n
(Nr ,k)

R

]
+

sin(θk) . (28)

Then, a polar change of coordinates leads to vn := (vn
r ,v

n
θ
)T .

For the fluid velocity, we have

u(t,x) =−∇p(t,x)−v(t) , (29)

that rewrites

u(t,r,θ) =−
(

∂r

(
p̃(t,r,θ)

r

)
+ vr

)
er−

(
1
r

∂θ p̃(t,r,θ)+ vθ

)
eθ , (30)

since ur = u(t,x) · er and uθ = ru(t,x) · eθ . We define at time tn

un
( j+ 1

2 ,k)
=−

p̃( j+1,k)
r j+1

− p̃( j,k)
r j

∆r
− vn

r , un
( j− 1

2 ,k)
=−

p̃( j,k)
r j
− p̃( j−1,k)

r j−1

∆r
− vn

r ,

un
( j,k+ 1

2 )
=− 1

r j

p̃( j,k+1)− p̃( j,k)

∆θ
− vn

θ , un
( j,k− 1

2 )
=− 1

r j

p̃( j,k)− p̃( j,k−1)

∆θ
− vn

θ .

2.2.1 Problem for c̃ and µ̃

For simplicity, we call again F the numerical fluxes. We can write the following
scheme for equation (7): for ( j,k) ∈ {1, ...,Nr}×{1, ...,Nθ},

c̃n+1
( j,k)− c̃n

( j,k)

∆ t
=

F( j+ 1
2 ,k)
−F( j− 1

2 ,k)

∆r
+

F( j,k+ 1
2 )
−F( j,k− 1

2 )

∆θ
.
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We define now the numerical fluxes. The diffusion part is implicit, so that no CFL
condition is needed (Allaire, 2005), while the advection is explicit due to the non-
linearity in the expression of v.

We have:

F( j+ 1
2 ,k)

= Dr j+ 1
2

c̃n+1
( j+1,k)
r j+1

−
c̃n+1
( j,k)
r j

∆r
−Aup

(
un
( j+ 1

2 ,k)
, c̃n

( j,k), c̃
n
( j+1,k)

)
,

F( j− 1
2 ,k)

= Dr j− 1
2

c̃n+1
( j,k)
r j
−

c̃n+1
( j−1,k)
r j−1

∆r
−Aup

(
un
( j− 1

2 ,k)
, c̃n

( j−1,k), c̃
n
( j,k)

)
,

F( j,k+ 1
2 )

=
1
r2

j

(
D

c̃n+1
( j,k+1)− c̃n+1

( j,k)

∆θ
−Aup

(
un
( j,k+ 1

2 )
, c̃n

( j,k), c̃
n
( j,k+1)

))
,

F( j,k+ 1
2 )

=
1
r2

j

(
D

c̃n+1
( j,k)− c̃n+1

( j,k−1)

∆θ
−Aup

(
un
( j,k− 1

2 )
, c̃n

( j,k−1), c̃
n
( j,k)

))
,

where Aup is the advection term expressed by

Aup(u,x−,x+) =

{
ux−, if u > 0,
ux+, if u < 0.

(31)

The external boundary condition (8) yields

F(Nr+
1
2 ,k)

= koff µ
n+1
k − kon c̃n+1

Nr ,k

for k ∈ {1, ...,Nθ}. The zero flux boundary condition (9) imposes that F( 1
2 ,k)

= 0
for k ∈ {1, ...,Nθ}. Similarly, the periodic conditions impose for j ∈ {1, ...,Nr}

F( j,Nθ+
1
2 )
= F( j, 1

2 )
=

1
r2

j

(
D

c̃n+1
( j,1)− c̃n+1

( j,Nθ )

∆θ
−Aup

(
un
( j, 1

2 )
, c̃n

( j,Nθ )
, c̃n

( j,1)

))
.

We write the corresponding scheme and group the implicit (resp. explicit) terms
on the left-hand-side (resp. right-hand-side). Note also that each equation is written
for k ∈ {1, ...,Nθ} with the convention that if k = 1, then k−1 = Nθ and k− 1

2 = 1
2 .

Similarly, if k = Nθ , then k+1 = 1 and k+ 1
2 = 1

2 .
For j = 1, we have(
1+

D∆ t
∆r2

r1+ 1
2

r1

)
c̃n+1
(1,k)−

D∆ t
∆r2

r1+ 1
2

r2
c̃n+1
(2,k)+

D∆ t
r2

1∆θ 2

(
−c̃n+1

(1,k−1)+2c̃n+1
(1,k)− c̃n+1

(1,k+1)

)
= c̃n

(1,k)−
∆ t
∆r

Aup
(

un
(1+ 1

2 ,k)
, c̃n

(1,k), c̃
n
(2,k)

)
+

∆ t
r2

1∆θ

(
Aup
(

un
(1,k− 1

2 )
, c̃n

(1,k−1), c̃
n
(1,k)

)
−Aup

(
un
(1,k+ 1

2 )
, c̃n

(1,k), c̃
n
(1,k+1)

))
. (32)



132 Christelle Etchegaray, Nicolas Meunier

Now, for j ∈ 2, ...,Nr−1, we obtain

c̃n+1
( j,k)+

D∆ t
∆r2 −

r j− 1
2

r j−1
c̃n+1
( j−1,k)+

r j− 1
2
+ r j+ 1

2

r j
c̃n+1
( j,k)−

r j+ 1
2

r j+1
c̃n+1
( j+1,k)

+
D∆ t

r2
j ∆θ 2

(
−c̃n+1

( j,k−1)+2c̃n+1
( j,k)− c̃n+1

( j,k+1)

)
= c̃n

( j,k)+
∆ t
∆r

(
Aup
(

un
( j− 1

2 ,k)
, c̃n

( j−1,k), c̃
n
( j,k)

)
−Aup

(
un
( j+ 1

2 ,k)
, c̃n

( j,k), c̃
n
( j+1,k)

))
+

∆ t
r2

j ∆θ

(
Aup
(

un
( j,k− 1

2 )
, c̃n

( j,k−1), c̃
n
( j,k)

)
−Aup

(
un
( j,k+ 1

2 )
, c̃n

( j,k), c̃
n
( j,k+1)

))
. (33)

Finally, for j = Nr, we get

− koff∆ t
∆r

µ
n+1
k

(
1+

kon∆ t
∆r

+
D∆ t
∆r2

rNr− 1
2

rNr

)
c̃n+1
(Nr ,k)

− D∆ t
∆r2

rNr− 1
2

rNr−1
c̃n+1
(Nr−1,k)

+
D∆ t

r2
Nr

∆θ 2

(
−c̃n+1

(Nr ,k−1)+2c̃n+1
(Nr ,k)

− c̃n+1
(Nr ,k+1)

)
= c̃n

(Nr ,k)+
∆ t
∆r

(
Aup
(

un
(Nr− 1

2 ,k)
, c̃n

(Nr−1,k), c̃
n
(Nr ,k)

))
(34)

+
∆ t

r2
Nr

∆θ

(
Aup
(

un
(Nr ,k− 1

2 )
, c̃n

(Nr ,k−1), c̃
n
(Nr ,k)

)
−Aup

(
un
(Nr ,k+ 1

2 )
, c̃n

(Nr ,k), c̃
n
(Nr ,k+1)

))
.

The membrane activation equation writes in polar coordinates

∂t µ(t,R,θ) = konc(t,R,θ)− koffµ(t,R,θ) , on C(0,R) . (35)

At each time step, the implicit discretization of equation (35) for k ∈ {1, ...,Nθ}
writes

−∆ tkonc̃n+1
k +(1+∆ t koff)µ

n+1
k = µ

n
k . (36)

For simplicity, we treat both the free and activated concentrations in the same
linear problem of unknown

E n =
(

c̃n
(1,1) . . . c̃n

(1,Nθ )
c̃n
(2,1) . . . c̃n

(2,Nθ )
. . . c̃n

(Nr ,Nθ )
µ̃

n
1 . . . µ̃

n
Nθ

)T
.

We have at each time step(
I(Nr+1)Nθ

+
∆ t

∆r2 A

)
E n+1 =

(
I(Nr+1)Nθ

− ∆ t
∆r

Bn
)

E n ,

where A is the diffusion matrix, and Bn the advection matrix.
The diffusion matrix writes
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A =



r1/2
r1

INθ
−

r
1+ 1

2
r2

INθ

. . . . . . . . .

−
r

j− 1
2

r j−1
INθ

r
j− 1

2
+r

j+ 1
2

r j
INθ

−
r

j+ 1
2

r j+1
INθ

. . . . . . . . .

−
r
Nr− 1

2
rNr−1

INθ

( r
Nr+ 1

2
rNr

+∆rkon

)
INθ
−∆rkoffINθ

−∆r2konINθ
∆r2koffINθ



+



1
r2
1
A

1
r2
2
A

. . .
1

r2
Nr−1

A
1

r2
Nr

A

0Nθ


, (37)

where the second matrix accounts for the angular diffusion, with A ∈ MNθ
(R) the

classical diffusion matrix with periodic flux boundary conditions:

A =



2 −1 −1

−1 2
. . .

. . . . . . . . .
. . . 2 −1

−1 −1 2


. (38)

Now, for the advection term Aup defined by equation (31), we write (u)+ =
max(u,0) and (u)− = min(u,0) so that Aup(u, c̃ j,k, c̃ j,k+1) = (u)+c j,k +(u)−c j,k+1.
Therefore, we introduce the following diagonal matrices for j ∈ {1, ...,Nr}, U+

j+ 1
2
∈

MNθ
(R) and U−

j+ 1
2
∈MNθ

(R):

U±
j+ 1

2
=



. . .
(un

( j+ 1
2 ,k−1)

)±

(un
( j+ 1

2 ,k)
)±

(un
( j+ 1

2 ,k+1)
)±

. . .


.
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Thus we can define the advection matrix:

Bn =



U+
3
2

U−3
2

. . . . . .
U+

j+ 1
2

U−
j+ 1

2
. . . U−

Nr− 1
2

0
0Nθ


−



0

U+
3
2

. . .

U+
j− 1

2
U−

j− 1
2

. . . . . .
U+

Nr− 1
2

U−
Nr− 1

2
0Nθ



+



1
r2
1
Bn

1
r2
2
Bn

. . .
1

r2
Nr−1

Bn

1
r2
Nr

Bn

0Nθ


(39)

where the discrete advection matrix Bn ∈ MNθ
(R) with periodic flux condition on

the boundary is defined as in Allaire (2005)

Bn =



(
un

3
2

)+ (
un

3
2

)−
. . . . . .(

un
j+ 1

2

)+ (
un

j+ 1
2

)−
. . .

(
un

Nθ− 1
2

)−
(

un
Nθ+

1
2

)− (
un

Nθ+
1
2

)+


(40)

−



(
un

1
2

)− (
un

1
2

)+

(
un

3
2

)+ . . .(
un

j− 1
2

)+ (
un

j− 1
2

)−
. . . . . .(

un
Nθ− 1

2

)+ (
un

Nθ− 1
2

)−


.
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3 Results

The discretization scheme was implemented using MATLAB. We performed some
numerical simulations to test the scheme’s numerical convergence. Since the prob-
lem has a boundary nonlinearity, comparing a numerical solution to an exact one is
out of reach in general.

We consider the case of a polarised initial condition that writes c̃(0,r,θ) =
cos(θ −π)+1, µ̃(0,θ) = 0.5c̃(0,R,θ). We fix some parameters: koff = D = kd = 1
; δ = γ = 2.

Illustrative example

By changing the value of the activation rate kon, we observe qualitatively different
stationary solutions. The figure 1 shows the time evolution in the molecular concen-
tration in the cell body in two characteristic cases. The left figure shows a typically
non motile profile, while the right figure displays a polarisation situation.

(a) kon = 0.3 (b) kon = 3

Fig. 1: Numerical simulation of the evolution in the molecular concentration over
time. Discretization parameters: ∆ t = 10−2, ∆r = ∆θ = 2π/120 ' 5.3 ∗ 10−2. Pa-
rameters: R = 1.5, koff = D = kd = 1 ; δ = γ = 2. Initial condition: c̃(0,r,θ) =
cos(θ −π)+1, µ̃(0,θ) = 0.5c̃(0,R,θ).

Note that for kon = 0, it is clear that the stationary concentration in activated
molecules is 0 everywhere on the boundary, so that v = 0 and the nonlinearity dis-
appears. In the following, we rather focus on cases where the stationary state can be
asymmetric.
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Non-zero stationary polarisation

We also performed the same simulation for kon = 0.3 and R = 1, with an angular
discretization step ∆θ = 2π/160 ' 3.9 ∗ 10−2, and varying values for ∆r and ∆ t.
The system is considered at numerical steady state when the concentration µ in
activated molecules has stayed unchanged for 1 numerical hour. Then, we obtain the
time to attain the steady state, as well as the stationary polarisation of the system,
quantified up to a constant by the cell velocity vector.

We consider the following parameter values:

∆r 5∗10−3 10−2 2∗10−2 2.5∗10−2

∆ t 10−3 2∗10−3 5∗10−3 10−2 1.5∗10−2

Fig. 2: Left: Time to attain the stationary state and Right: stationary polarisation
module for varying ∆r and ∆ t, and kon = 0.3.

The figure 2 shows that the time to attain the stationary state is a consequence of
the polarisation state of the stationary solution. Indeed, considering that the initial
condition is polarised, and the simulation shows the system’s depolarisation towards
a less polarised steady state, then the more polarised it is, the sooner it is attained.

We also clearly notice that the smaller ∆ t gets, the more polarised the stationary
state gets. This trend can be distinguished independently of ∆r. The radial step has a
smaller effect, but more precise grids are correlated with lower polarised solutions.

Overall, the simulations show that a fine time step is fundamental to catch the rel-
evant stationary type of behaviour. The polarisation module being decreasing with
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the time step, we can infer that the numerical solution approach a polarised state.
However, this also shows that the previous numerical simulations are better under-
stood in a qualitative sense rather than for quantitative purposes.

Low stationary polarisation

Finally, we perform the same numerical test with kon = 0.1 to check how the dis-
cretization steps may generate an error between a polarised and a non polarised
stationary solution. We obtain the values depicted in figure 3.

We can see that the stationary polarisation levels are very low compared to the
case where kon = 0.3. The same trend appears for the effect of ∆ t, while the effect
of ∆r is less visible since the nonlinear term is small.

To determine if these polarisation levels could be comparable to a true symmetric
stationary state, we performed the same simulation for kon = 0 and for the most pre-
cise time-space grid. The stationary polarisation module was approximately equal
to 1.63∗10−4, so that no clear distinction can be made between these cases.

Fig. 3: Left: Time to attain the stationary state and Right: stationary polarisation
module for varying ∆r and ∆ t and kon = 0.1.
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4 Conclusion

In this work, we have presented the finite volume discretization of a multiscale
model for 2D cell crawling migration consisting in a Darcy fluid dynamics coupled
to a Poisson problem and to a nonlinear and non-local reaction-advection-diffusion
problem for the concentration in a molecular specie. The simulation of numerical
solutions of this type of problems is very useful since the mathematical analysis is
necessarily limited, whereas the model show varied behaviours.

The discretization method showed good qualitative numerical result. In partic-
ular, the molecular mass is preserved numerically. However, in critical cases, the
scheme seems not able to make the distinction between polarised and unpolarised
states. A natural continuation will consist in taking into account the interaction with
the environment (chemical signal, mechanical obstacle) as a bias for motion. Fi-
nally, further studies should be based on an implicit treatment of the nonlinearity
Cancès et al. (2017a,b).
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