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Abstract Sensitivity analysis has become increasingly useful in many fields of en-
gineering and sciences. Researchers use sensitivity and uncertainty analysis in the
mathematical modelling of biological phenomena because of its value in identifying
essential parameters for model’s output. Moreover, it can help in the process of ex-
perimental analysis, model order reduction, parameter estimation, decision making
or development of recommendations for decision makers. Here, we demonstrate the
use of local sensitivity analysis to understand the influence of different parameters
on a threshold parameter, RI

0, resulting from the analysis of a within human-host
model for the dynamics of malaria parasites. Our results reveal that the obtained RI

0
is most sensitive to the infection rate of healthy red blood cells (RBCs) by mero-
zoites, the average number of merozoites released per bursting parasitized RBCs,
the proportion of parasitized RBCs that continue asexual reproduction and the per
capita natural death rate of merozoites.
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1 Introduction and background

Malaria remains one of the most prevalent human diseases worldwide and still
causes a significant problem in many tropical areas, especially in the tropical African
region. The malaria control problem comes with a range of challenges that must be
surmounted. These challenges, including the issues of morbidity and mortality, are
listed in the world malaria report [32]. Mathematical and statistical sensitivity anal-
ysis can be used to quantify the magnitude and relative importance of some of the
malaria disease parameters towards the malaria control problem. Such a sensitiv-
ity analysis will be useful if appropriate models are developed that can simulate
the malaria control problem and that can complement theoretical and experimental
work.

Sensitivity refers to the degree to which an input parameter influences a model’s
output, and thus sensitive parameters are those which have a significant influence
on the model’s outcomes [12]. Sensitivity analysis is the systematic investigation
of a function, a model or a system’s response/output to either perturbation of the
quantitative factors (input and/or parameters) or variations in the qualitative factors
(structure, connectivity modules or submodels) [16]. It can be used to study how
the uncertainty in the output of a mathematical system is influenced by different
sources of uncertainty in its inputs such as the parameters [22] and in identifying
influential model parameters that can aid in optimizing model structure. It can play
a crucial role for decision making policy in developing public health strategies for
control and prevention of infectious diseases [19, 35]. The importance and usage of
sensitivity analysis in decision making is well documented [4, 12, 18, 19, 22, 24].

There are generally two classes of sensitivity analysis approaches: Local Sensi-
tivity Analysis (LSA) and Global Sensitivity Analysis (GSA) [8, 15, 16, 29]. Local
sensitivity analysis, as defined in Zhou et al. [36], is the assessment of the local im-
pact of an input factors’ variation on a model’s response whereby concentration on
the sensitivity is in the vicinity of a set of factor values. On the other hand, global
sensitivity analysis is the process of apportioning the uncertainty in outputs to the
uncertainty in each input factor over their entire range of interest [37]. To conduct
a sensitivity analysis, the input and output variables of the model under study must
be clearly understood. For example, in disease dynamics, possible useful outputs
are the state solutions, the threshold parameters such as the basic reproduction or
the effective reproduction numbers, defined using the system parameters. In [15],
the author defined a variance-based global sensitivity analysis which focusses on
the variance of the model output. More precisely, he analysed how input variability
influences output variance, giving a rigorous quantitative overview. We now present
a summary of the local versus global sensitivity analyses.
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Table 1: Summary comparison of Local sensitivity vs Global sensitivity

LOCAL SENSITIVITY ANALYSIS (LSA) GLOBAL SENSITIVITY ANALYSIS (GSA)

Effect of an input/parameter on an output is ob-
tained by varying inputs about a fixed point by
a small amount one at a time.

Effects of inputs on an output are obtained by
varying all inputs simultaneously over their rea-
sonable parameter ranges [6, 21].

Focus is on estimating local impact of a param-
eter on model output.

Focus is on analysing global impact on the en-
tire parameter space [31].

Provides a particular view on the influence of an
individual input/parameter on a model output,
holding other parameters fixed. So changes to
input are limited to one parameter at a time and
so cannot account for the effects on the output
of the likely interactions between parameters
which can occur in disease models [4, 16, 38].

Provides an overall view on the influence of in-
puts on outputs varying all or some parameters
simultaneously. Allows for a possibility that all
input parameters of the model can be varied si-
multaneously and the effects on the output of
both individual inputs and interactions between
inputs are assessed.

Less accurate but much faster and easy to han-
dle.

More accurate, needs more effort, intensive
computational procedures and is challenging in
general. [37].

Investigates the behaviour of a model/output
of a model in a specific set of nominal in-
puts/nominal parameter values.

Can better handle input values that are uncertain
and cover large ranges.

Uses Finite differences to approximate deriva-
tives [2, 8, 10, 15, 29, 35] or in some cases con-
structing a Green’s or Kernel function in an in-
tegral framework [5, 6, 11, 20, 29, 38].

Uses mainly global statistical methods such
as Sampling-based methods using Monte-Carlo
techniques, Variance-based methods such as the
Method of Sobol [16, 29, 31, 35].

Approaches to sensitivity analysis

There are various methods of local and global sensitivity analysis. See, [1, 3, 4,
5, 6, 8, 9, 15, 16, 29, 19, 31, 35], for example. Local sensitivity methods can be
broadly divided into Forward Sensitivity Analysis, which involves approximating
derivatives, and Adjoint Sensitivity Analysis which involves evaluating integrals.
Our focus will be on the Forward method that involves estimating derivatives. In
effect, this local method invokes finding the derivative of the output with respect
to an input factor, where the derivative is taken at some fixed point in the space of
the input. This derivative is called sensitivity coefficient of the output to the input. If
the local sensitivity analysis is for an output with a single input, derivatives will be
ordinary, and the sensitivity coefficient can be approximated as we now demonstrate.

Finite Difference Method: Consider an output given by a real valued function,
φ(p), where p is an input parameter. To study how a small perturbation in p, say
∆ p, influences the response in the output, we use the derivative of φ with respect to
p taken at the input p. It is often assumed that Φ has a continuous dependence on
the parameter p so that we can, for example, expand φ(p+∆ p) in a Taylor series in
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p to approximate the first derivative, after neglecting higher order terms in ∆ p, as

φ
′(p) ≈ φ(p+∆ p)−φ(p)

∆ p
. (1)

This is a forward-difference estimate and is a first-order approximation for the
first derivative since the truncation error is O(∆ p). On the other hand, the central-
difference estimate for the first derivative is a second-order approximation since the
truncation error is O(∆ p2), and is given as

φ
′(p)≈ φ(p+∆ p)−φ(p−∆ p)

2∆ p
.

Approximations for second-order and higher-order derivatives can be obtained
similarly. For instance, computing the central difference approximation Φ ′(p +
1
2 ∆ p) and φ ′(p− 1

2 ∆ p), with ∆ p replaced by 1
2 ∆ p, we have

φ
′′(p)≈ φ(p+∆ p)−2φ(p)+φ(p−∆ p)

∆ p2 .

Now, in general, physical problems usually involve the interaction of more than
one input and are thus modelled by a system of equations. Therefore, in the above
discussion, the output function will be a function of several input parameters, and
hence to look for local sensitivities we need to use the gradient of the output per-
turbed about the corresponding components of the vector of parameters. Consider
a parameterized model system arising from an applied problem (say for example in
ecology or biology etc) with n− state variables and m− input parameters:

dX
dt

= Φ(X(t,p);p), X(t0;p) = Xt0(p), (2)

where X=(x1,x2, · · · ,xn)
T ∈Rn is the vector of state variables, p=(p1, p2, · · · , pm)

T

∈ Rm is the vector of input parameters and Φ = (φ1,φ2, · · · ,φn) is the vector with
components describing the right hand side functions of the system. Particularly, for
each i = 1,2, · · · ,n, we have the single model equation

∂xi

∂ t
= φi(X(t;p),p). (3)

Next, we use partial derivatives to determine local sensitivities by computing the
changes in the model output (i.e. model solutions xi, i = 1,2, · · · ,n) with respect
to the variations in the model inputs (parameters) at local points in the parameter
space. The challenge with using finite-difference formulas to estimate sensitivity
coefficients is in the step size selection of the input parameter, ∆ p. Questions re-
lating to whether the step size is too small or too big need to be addressed [3, 5].
Calculating sensitivities with finite-differences require at least m + 1 runs of the
model since it must be calculated for each of the m parameters for xi [1]. Addi-
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tionally, the finite difference technique is often used without consideration of the
non-linearity of the model or model outputs) nor the round-off error introduced by
the output calculations.

Symbolic (Direct) Differentiation Method: More sophisticated methods involve
using the symbolic (direct) differentiation method [5, 6, 10, 36]. Consider the single-
state equation in (3). Then differentiating both sides with respect to p j, we have

∂

∂ p j

∂xi

∂ t
=

∂

∂ p j
φi(X(t;p),p).

Using the chain rule for derivatives and Clairaut’s theorem for mixed partial deriva-
tives, we obtain

∂

∂ t
∂xi

∂ p j︸︷︷︸
:=si j

=
∂φi

∂xi

∂xi

∂ p j
+

∂φi

∂ p j
,

∂xi

∂ p j
(t0) =

∂xit0
∂ p j

or, equivalently,

s′i j(t) =
∂φi

∂xi
si j(t)+

∂φi

∂ p j
, si j(t0) = si jt0

,

where i = 1,2, · · · ,n; j = 1,2, · · · ,m, and s′i j(t) := s′i j(t;p) = dsi j(t)
dt is the time-

derivative of the local sensitivity coefficients (LSE), si j. We can find the local sen-
sitivity matrix, S j(t), for each j = 1,2, · · · ,m. Differentiating both sides of equation
(2) with respect to p j yield

∂

∂ p j

dX
dt

=
∂

∂ p j
Φ(X(t;p),p).

If we apply chain rule on the left hand side and Clairaut’s theorem for mixed partial
derivatives on the right hand side, we get

d
dt

∂X
∂ p j︸︷︷︸
:=S j

=
∂Φ

∂X
· ∂X

∂ p j
+

∂Φ

∂ p j
,

∂X
∂ p j

(t0) =
∂Xt0
∂ p j

,

=⇒ d
dt

S j(t) = J(t) ·S j(t)+F j(t), S j(t0) = St0 , (4)

where, for each j = 1,2, · · · ,m :

J=
∂Φ

∂X
=


∂φ1
∂x1

∂φ1
∂x2
· · · ∂φ1

∂xn
...

... · · ·
...

∂φn
∂x1

∂φn
∂x2
· · · ∂φn

∂xn

 , F j =
∂Φ

∂ p j
=


∂φ1
∂ p j
...

∂φn
∂ p j

 , S j =
∂X
∂ p j

=


∂x1, j
∂ p j
...

∂xn, j
∂ p j

 (5)
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Therefore, for each j = 1,2, · · · ,m the local sensitivity matrix, S j, can be obtained
from equation (4) at any time t, where J, F j, S j are as given in (5). Thus, to find
S j, we need to solve the coupled system defined in equations (2) and (4) given as:

dX
dt = Φ(X(t,p);p), X(t0;p) = Xt0(p)

d
dt S j(t) = J(t) ·S j(t)+F j(t), S j(t0) = St0 .

(6)

Generally, taking the derivative of the components of the vectors in system (2)
with respect to the components of the vector parameter p, we arrive at

d
dt

∂p =
∂Φ

∂X
· ∂X

∂p
+

∂Φ

∂p
. This implies S′(t) = J ·S(t)+F(t), S(t0) = S0,

where

J =
∂Φ

∂X
=


∂φ1
∂x1

∂φ1
∂x2
· · · ∂φ1

∂xn
...

... · · ·
...

∂φn
∂x1

∂φn
∂x2
· · · ∂φn

∂xn

 , F =
∂Φ

∂p
=


∂φ1
∂ p1

∂φ1
∂ p2
· · · ∂φ1

∂ pm
...

... · · ·
...

∂φn
∂ p1

∂φn
∂ p2
· · · ∂φn

∂ pm

 ,

and

S =
∂X
∂p

=


∂x1
∂ p1

∂x1
∂ p2
· · · ∂x1

∂ pm
...

... · · ·
...

∂xn
∂ p1

∂xn
∂ p2
· · · ∂xn

∂ pm

 .

We notice here that the initial conditions S j(t0), j = 1,2, · · · ,m for system (4) or
S(t0) can be obtained from the initial conditions of X, since S j(t0) = ∂X

∂ p j
(t0). That

is, the initial condition of the local sensitivity matrix S j(t) are simply the partial
derivatives with respect to the input parameter p j of the initial condition of X. So,
if xi(t0) does not contain p j, for at least one i, then si j(t0) = 0, ∀(i, j). On the other
hand, if the initial condition for xl , 1 ≤ l ≤ n contains p j, then si j(t0) = 1, only
when i = l, otherwise si j(t0) = 0, for all i 6= l. Most often, we take si j(t0) = 0, ∀1≤
i≤ n, 1≤ j ≤ m, which means S(t0) = 0 [5, 29, 38].

We have determined the expressions for the local sensitivity coefficients, si j(t).
The question is what do they measure? Now, since, si j(t) =

∂xi
∂ p j

, it implies that a
one unit change in the input p j will produce a change of si j in the output xi [29].
However, since the size of xi will typically impact the size of si j, we will consider
relative changes (in percents). For this, we introduce normalized local sensitivity
coefficients (also referred to by some authors as elasticity index or local sensitivity
index), see [29, 38] defined here as:



146 Woldegebriel A. Woldegerima, Gideon A. Ngwa, Miranda I. Teboh-Ewungkem

s̃i j =
p j

xi
si j =

p j

xi

∂xi

∂ p j
=

∂ ln(xi)

∂ ln(p j)
. (7)

The normalized local sensitivity coefficient s̃i j is dimensionless and quantifies the
relative changes, giving the percent change in the output (which is xi here) due to a
1% change in the parameter (p j here).

The direct differential method presented above has it’s advantages and drawbacks
when compared to the finite-difference method. Comparatively and as an advantage,
the difficulty in step size selection is not a main issue in the differential method but
tends to cause problems in the finite-difference method [38]. Another advantage of
the differential method over the finite difference method is that the sensitivity of
different outputs (state variables) with respect to certain parameters can be solved
simultaneously. This can be done by simultaneously solving the coupled system
(6) for both the state variables X and S j =

∂X
∂ p j

. However, from a disadvantageous
standpoint, solving the coupled system (6) for all j = 1,2, · · · ,m simultaneously is
computationally-demanding since it requires that we solve (m+1)n ODEs m times
[29]. Furthermore, determining the Jacobian matrix J is time-consuming especially
for large-scale problems. Additionally, when several parameters are changed simul-
taneously, investigating their effects on model results via the sensitivity matrix S,
using the direct differential method is also time-consuming and computationally-
demanding. To reduce the time-consuming computation cost, an alternative method
called adjoint method (some authors called it the Green function method) was de-
veloped [11, 29]. The adjoint method works by defining a Greens or kernel function
matrix. For more details on this method, see [5, 6, 11, 20, 29, 38] and references
therein.

Sensitivity analysis can be applied to different types of models (deterministic,
stochastic, statistical, etc.) and can be used in different fields such as physical system
models [15], systems biology models [38], economic modelling for decision making
[18], chemical kinetics [23], large-scale models [6], infectious disease modelling
[4, 7, 17, 24, 35] to mention only a few.

2 Normalized sensitivity analysis applied to a within-human-host
model for malaria parasitemia

Here, we investigate the local sensitivity of the basic reproduction number to key
associated parameters for a within human-host immuno-pathogenesis model devel-
oped and analysed in [34]. For the model developed in [34], the basic reproduction
number is a parameter-dependent output of the model system and gives an indication
of the severity of Plasmodium parasitemia in an individual, and lowering the num-
ber below unity or in some cases below a critical number that is less than 1 [25], is
the major way to reduce parasitemia and relieve a patient from illness. Thus study-
ing the monotonicity relations between the reproduction number and the parameters
used in the model is important.
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2.1 The model

The model developed and analysed in [34] incorporates seven main interacting ac-
tors for the malaria parasite dynamics within a human-host at time t. These are the
densities of (i) healthy/uninfected red blood cells (HRBCs), Rh(t), (ii) parasitized
red blood cells (IRBCs) (these are healthy red blood cells infected by merozoites),
Rp(t), (iii) free floating merozoites, M(t), (iv) early/immature stage gametocytes
(stages I-IV), Ge(t), (v) the late/matured gametocytes (stage V), (Gl(t)), (vi) the
human innate immune system effectors, Ei(t), and (vii) the human adaptive im-
mune system effectors, Ea(t). The state variables are presented in Table 2 and relate
to each other through the equations:

dRh

dt
= ωRh

(
1− Rh

K

)
− β1RhM

1+ξ0Ea
, (8)

dRp

dt
=

β1RhM
1+ξ0Ea

− (γp +µp)Rp− (ρpRp +ρaRpEa)Ei, (9)

dM
dt

=
rγp(1−σ)Rp

1+ξ1Ea
−µmM−

(
β2Rh

1+ξ0Ea
+

β3Rp

1+ξ0Ea
+(ρm+ρnEa)Ei

)
M, (10)

dGe

dt
=

sσγpRp

1+ξ1Ea
− (γl +µe)Ge− (ρg +ρqEa)EiGe, (11)

dGl

dt
=

γlGe

1+ξ2Ea
−µlGl−ρlEiGl , (12)

dEi

dt
= δiEi

(
1− Ei

Ki

)
+ϑ1Rp +ϑ2M− (λ1Rp +λ2M)Ei, (13)

dEa

dt
= ρ1Rp +ρ2M− (µa +θ1Rp +θ2M)Ea. (14)

In system (8) -(14), HRBCs (Rh) are recruited following a logistic model and some
are parasitized due to contact (assumed to be mass action contact) with free float-
ing merozoites (M), producing IRBCs (Rp) but also lead to elimination of the free
floating merozoites. Some of the free floating merozoites also seek to infect para-
sitized (infected) red blood cells (IRBCs). IRBCs follow one of three possible paths
- they either die naturally, or burst to release r merozoites per IRBC, or continue
the path towards the formation of the early state gametocytes (Ge) which then leads
to the transmissible forms of the malaria parasites, the late state gametocytes (Gl).
In some of the processes, the innate (Ei) and adaptive (Ea) immune system cells
are activated/excited and seek to control the mechanisms of parasitization, bursting,
contacts, and early state gametocyte formation. The different parameters describing
transformations and contact rates are described in Table 3, with ω = Λ − µh the

constant growth rate of healthy red blood cells and K =
Λ −µh

µ̃h
= ω

µ̃h
> 0, the max-

imum carrying capacity of healthy red blood cells. For more details on the model
derivation, see [34].
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Table 2: Description of state variables and their quasi-dimension: C = the density
of red blood cells per unit volume of blood =red blood cells /µl; M = density of
free-floating merozoites per unit volume of blood = merozoites/µl; G = density of
gametocytes per unit volume of blood = gametocytes/µl; I = density of immune
cells per unit volume = immune cells /µl.

Symbol Description Quasi-dimension

Rh Density of healthy erythrocytes (red blood cells) C = cell/µl
Rp Density of infected erythrocytes (red blood cells) C = cell/µl
M Density of free-floating merozoites M = merozoites/µl
Ge Density of immature gametocytes G = gametocytes/µl
Gl Density of mature gametocytes G = gametocytes/µl
Ei Density of innate immune cells I = immune cells /µl
Ea Density of adaptive immune cells I = immune cells /µl

Table 3: Description of Parameters and their quasi - dimensional units

Parameter Description Quasi-
dimension

β1 Mass action contact rate between free merozoites and HRBCs. Models the
effective parasitization rate of HRBCs by merozoites.

M−1T−1

β2 Adjusted mass action contact rate between free merozoites and HRBCs.
Models the effective absorption rate of free merozoites by HRBCs as the
merozoites seek to parasitize HRBCs. In the process, free merozoites are
cleared from the blood.

C−1T−1

β3 Mass action contact rate between free merozoites and IRBCs. Models the
effective absorption rate of free merozoites by IRBCs as the merozoites
seek to infect red blood cells (in this case IRBCs) In the process, free
merozoites are cleared from the blood.

C−1T−1

µh Per capita natural death rates of healthy red blood cells. T−1

µ̃h Additional death of healthy red blood cells due to density dependent con-
tact inhibition.

C−1T−1

Λ Linear growth rate of red blood cells due to per capita production of red
blood cells from the bone marrow.

T−1

µp Per capita natural linear death rate of parasitized erythrocytes. T−1

µe Per capita natural linear death rate of immature gametocytes. T−1

µl Per capita natural linear death rate of mature gametocytes. T−1

µm Per capita natural linear death rate of freely-floating merozoites. T−1

µa Per capita natural linear death rate of adaptive immune system cells. T−1

δi Effective linear growth rate of innate immune system cells. T−1

Ki Effective carrying capacity of the environment for innate immune system
cells.

I

ξ0 Efficiency of adaptive immune effectors in blocking invasion of healthy
red blood cells by merozoite during mass action contact.

I−1

ξ1 Efficiency of adaptive immune effectors in inhibiting merozoite transfor-
mation in parasitized red blood cells.

I−1

ξ2 Efficiency of adaptive immune effectors in inhibiting maturation of early
state gametocytes.

I−1
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Parameter Description Quasi-
dimension

ρp Elimination/killing rate of parasitized red blood cells by innate immune
system cells due to mass action contact.

I−1T−1

ρm Elimination/killing rate of free merozoites by innate immune system cells
due to mass action contact.

I−1T−1

ρe Elimination/killing rate of immature gametocytes by innate immune sys-
tem cells due to mass action contact.

I−1T−1

ρl Elimination/killing rate of mature gametocytes by innate immune system
cells due to mass action contact.

I−1T−1

ρa Mass action contact rate between infected red blood cells, innate immune
system cells and adaptive immune system cells leading killing or elimi-
nation of IRBCs. These are additional clearances due to the presence of
adaptive immunity which enhances the innate.

I−2T−1

ρn Mass action contact rate between merozoites, innate immune system cells
and adaptive immune system cells killing or elimination of merozoites.
These are additional clearances due to the presence of adaptive immunity.
Antibodies not only blocks invasion but also assist innate cells in engulfing
merozoites.

I−2T−1

ρq Mass action contact rate between immature gametocytes, innate immune
system cells and adaptive immune system cells. These are additional clear-
ances due to presence of adaptive immunity.

I−2T−1

r Average number of merozoites released by each bursting IRBC. MC−1

s Average number of early stage gametocytes arising from one IRBC. GC−1

σ σ ∈ [0,1] is the proportion of the infected red blood cells that differentiate
following the path towards gametocytogenesis.

1

γp Rate at which parasitized red blood cells mature to a point where they
either burst to release more free-floating merozoites or continue differen-
tiating towards the gametocytogenesis path.

T−1

γl Rate at which early stage/immature gametocytes mature to become late
stage/mature gametocytes.

T−1

ϑ1 Linear response/production rate of innate immune effectors due to stimu-
lation by parasitized red blood cells.

IC−1T−1

ϑ2 Linear response/production rate of adaptive immune effectors due to stim-
ulation by free floating-merozoites.

IM−1T−1

ρ1 Linear response/production rate of adaptive immune system cells due to
stimulation by parasitized red blood cells.

IC−1T−1

ρ2 Linear response/production rate of adaptive immune system cells due to
simulation by free-floating merozoites.

IM−1T−1

λ1 Mass action contact parameter between infected red blood cells and innate
immune system cells modelling the rate of depletion of the innate immune.

C−1T−1

λ2 Mass action contact rate between free-floating merozoites and innate im-
mune system cells, modelling the rate of depletion of innate immune cells
due to such contact.

M−1T−1

θ1 Mass action contact parameter between parasitized red blood cells and
adaptive immune system cells, modelling the rate of depletion of adaptive
immune cells due to such contact.

C−1T−1

θ2 Mass action contact parameter between free-floating merozoites and adap-
tive immune system cells, modelling the rate of depletion of adaptive im-
mune cells due to such contact.

M−1T−1
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The basic properties of boundedness, positivity well-posedness of solutions for
the model have been discussed in [34]. Here our main objective is to study sensitivity
of the basic reproduction number, an output of the system (8)-(14) with respect to
the important parameters of the system. We start by computing the expression for
the basic reproduction number using the next generation matrix. For this, we need
to first determine the infection-free steady state, which for our within-human-host
dynamics, is referred to as the Merozoite Free Steady State (MFSS). The steady
state solutions, (R∗h,R

∗
p,M

∗,G∗e ,G
∗
l ,E

∗
i ,E

∗
a ), of system (8)-(14) are solutions of the

algebraic system obtained by setting the right hand side to zero. Starting with (8),
dRh

dt
= 0 yields two possible scenarios. Either R∗h = 0 or

R∗h = K− Kβ1M∗

ω(1+ξ0)E∗a
. (15)

Substitute equation (15) into the next equation where
dRp

dt
= 0. For the case

R∗h = 0, we get R∗p[γp + µp + (ρp + ρaE∗a )Ei∗] = 0. Thus, R∗p = 0 or γp + µp +
(ρp +ρaE∗a )Ei∗ = 0. But, the latter is impossible since γp,µp,ρp > 0,ρa > 0, and

E∗a ,E
∗
i > 0. So, we only consider R∗p = 0 . Substituting R∗p = 0, into

dM
dt

= 0 yield

M∗ = 0 . Substituting M∗ = 0 into either equations (8), (9) or (10) each set to zero,
yield R∗p = 0. Thus, M∗ = 0 if and only if R∗p = 0.

By a similar argument applied to
dGe

dt
= 0=

dGl

dt
, if R∗p = 0, we get G∗e = 0, G∗l = 0.

Additionally, for equations
dEi

dt
= 0 =

dEa

dt
, if R∗p = 0, we get E∗i = 0 or E∗i = Ki,

from equation (13) and E∗a = 0 from equation (14). Thus, in the absence of the
malaria parasites (i.e. absence of disease), equivalent to R∗p = 0 = M∗, the possi-
ble merozoite-free, and in general parasite-free, steady states occur when either (i)
R∗h = 0, or R∗h = K, (ii) E∗i = 0 or E∗i = Ki and with G∗e = G∗l = E∗a = 0. Thus we
have the following steady states when there are no parasites within human blood
(i.e. when M∗ = 0):

X∗0 = X(Rh=0,Ei=0,Ea=0) = (0,0,0,0,0,0,0),

X∗m f = X(Rh=K,Ei=Ki,Ea=0) = (K,0,0,0,0,Ki,0),

X(Rh=K,Ei=0,Ea=0) = (K,0,0,0,0,0,0),

X(Rh=0,Ei=Ki,Ea=0) = (0,0,0,0,0,Ki,0).

Henceforth, we will refer to X(Rh=0,Ei=0,Ea=0) as the trivial steady state (TSS),
X∗m f = X(Rh=K,Ei=Ki,Ea=0) as the merozoite-free steady state (MFSS), and
X(Rh=K,Ei=0,Ea=0) and X(Rh=0,Ei=Ki,Ea=0) as the boundary steady states.

Biologically, the merozoite-free steady state (MFSS), X(Rh=K,Ei=Ki,Ea=0) =
(K,0,0,0,0,Ki,0), depicts a healthy individual who has never been infected with
the malaria parasite or was infected but may have been away from a malaria en-
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demic region for a while and/or has not received a successful sporozoite (transmis-
sible forms of the parasite from mosquitoes to humans [25, 26, 27, 28]) inoculation
from an infective mosquito. Thus, this individual has only their healthy red blood
cells and innate immune cells. Their adaptive immune cell population is at the zero
level because adaptive immune cells are developed and maintained with continu-
ous re-exposure to the malaria parasite, waning with time when there is no contact
between the individual and an infectious mosquito. The first boundary steady state
(0,0,0,0,Ki,0), depicts a scenario in an individual who has innate immune cells but
their healthy red blood cells have been depleted. In other words, such an individual
has only white blood cells but no red blood cells. We understand that such a scenario
may be rare but can hypothetically occur if there is heavy parasitemia that compro-
mises the individual’s system, leading to the depletion of their healthy red blood
cells and likely death of the individual, especially if there is no recourse to remedy
the situation. The second boundary steady state (K,0,0,0,0,0,0), depicts a scenario
in an individual who has healthy red blood cells but no innate immune cells. In other
words, the individual has only red blood cells but no white blood cells. This will be
an individual with a very compromised immune system.

Definition 1. As defined in [14], by the within-human-host basic reproduction num-
ber of the malaria parasite, hereafter denoted by RI

0 > 1, we mean the average num-
ber of second generation infected red blood cells generated by one primary infected
red blood cell at the onset of infection.

Thus, if RI
0 > 1, then on average each IRBC produces more than one new IRBC

and hence the merozoites are able to invade and infect available HRBCs implying
persistence of parasitemia. On the other hand, if RI

0 < 1, then on average an IRBC
produces less than one new IRBC and hence the parasite is not able to establish in
the human, leading to possible parasite clearance in the human. RI

0 = 1 is a threshold
value below which the generation of secondary cases is insufficient to maintain the
infection within the human-host. Now, the creation of newly infected red blood cells
comes as a result of the bursting of the IRBCs to release of merozoites. Thus, RI

0 as
defined above can be thought of as a measure of the efficiency of a merozoite’s first
infection.

Next, we use the next-generation matrix to determine RI
0, the basic reproduction

number of system (8)-(14) [30]. The first step in using the next generation matrix
approach in determining the reproduction number is identifying terms representing
new infections in the model system and separating them from transfer terms [30].
For this, let Fi be the rate of appearance of new infections in compartment i, V −i be
the rate of transfer of cells or parasites out of compartment i by all other means, and
V +

i be the rate of transfer of cells or parasites into compartment i by all other means.
Set Vi = V −i −V +

i , and F = [Fi] , V = [Vi] , and E0 = Xm f = (K,0,0,0,0,Ki,0)
be the MFSS. Define

F =

[
∂Fi

∂x j
(E0)

]
, V =

[
∂Vi

∂x j
(E0)

]
, i, j = 1,2, · · · ,7.
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The system is constructed such that x′i = Fi−Vi, i = 1,2,3,4,5,6,7. Here X is the
vector of our state variables. The matrix G := FV−1 is called the next generation
matrix. The within-host basic reproduction number RI

0 is then largest or dominant
eigenvalue of G. That is, RI

0 = ρ(G) = maxλ{|λ | : Gx = λx}. We recall here that
it is not necessary to use the whole system to determine RI

0, rather, only the sub-
system that corresponds to the infectious compartments can be utilized [30]. From
our model (8)-(14), the subsystem representing the infectious compartments are de-
termined by the variables Rp,M,Ge,Gl . Considering only the equations for these
four variables Rp,M,Ge,Gl , and identifying terms representing new infections in
the system, separating them from the transfer terms yield

F =


β1RhM
1+ξ0Ea

0
0
0

, V =


Rp(γp +µp)+(Eaρa +ρp)EiRp

−Rpγpr(1−σ)
Eaξ1+1 + MRhβ2

Eaξ0+1 +
MRpβ3
Eaξ0+1 +Mµm +(Eaρn +ρm)EiM

− Rpγpsσ

Eaξ1+1 +Ge(γl +µe)+(Eaρq +ρe)EiGe

− Geγl
Eaξ2+1 +EiGlρl +Gl µl


Their corresponding Jacobian matrices, F and V , respectively, evaluated at the
MFSS are

F =


0 Kβ1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, V =


Kiρp + γp +µp 0 0 0

γpr(σ −1) Kβ2 +Kiρm +µm 0 0
−γpsσ 0 Kiρe + γl +µe 0

0 0 −γl Kiρl +µl


Clearly, the matrix V is invertible. Through some standard computations we obtain

RI
0 = ρ(FV−1) =

Kβ1γpr(1−σ)

(Kiβ2ρp+β2γp+β2µp)K+γpµm+µmµp+(Kiγp+Kiµp)ρm+
(
K2

i ρm+Kiµm
)
ρp

,

which simplifies to

RI
0 =

β1γpωr(1−σ)

(ρpKi + γp +µp)(β2ω +ρmµ̃hKi +µmµ̃h)
, (16)

where K = Λ−µh
µ̃h

= ω

µ̃h
. The expression for RI

0 in equation (16) is the basic repro-
duction number for the model system (8) - (14). We note that the same expression
can be obtained by investigating the local stability of the MFSS.

In what follows, we will compute the normalized local sensitivity indices of RI
0

relative to the parameters associated to the within human-host malaria infection for
model (8)- (14). The set of input parameters for RI

0 is

p = {β1,γp,ω,r,σ ,ρp,Ki,µp,β2,ρm, µ̃h,µm}. (17)
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We will then investigate the impact on the normalized forward sensitivity (or elastic-
ity index) of RI

0 due to the variations in the given parameters. When a system output
has many parameters, the results of the output will not change equally to changes in
parameters because some of them are highly sensitive, others have low sensitivity
and some have relative zero sensitivity. The output can be optimized by examining
which parameters are sensitive and which are not.

The normalized local sensitivity index of the output RI
0, to a parameter p ∈ p,

denoted here by Ψ
RI

0
p is

s̃p =Ψ
RI

0
p =

p
RI

0

∂RI
0

∂ p
=

∂ ln(RI
0)

∂ ln(p)
.

Using this definition, we obtain the following indices for RI
0 relative to each of the

parameters in (17):

Ψ
RI

0
µm = − µmµ̃h

β2ω + µ̃hµm +ρmµ̃hKi
, Ψ

RI
0

r =Ψ
RI

0
β1

= 1 (18)

Ψ
RI

0
ω =

µmµ̃h +ρmµ̃hKi

β2ω + µ̃hµm +ρmµ̃hKi
, Ψ

RI
0

µ̃h
=− µmµ̃h +ρmµ̃hKi

β2ω + µ̃hµm +ρmµ̃hKi
, (19)

Ψ
RI

0
β2

= − ωβ2

β2ω + µ̃hµm +ρmµ̃hKi
, Ψ

RI
0

γp =
ρpKi +µp

ρpKi + γp +µp
, (20)

Ψ
RI

0
µp = −

µp

ρpKi + γp +µp
, Ψ

RI
0

ρp =−
ρpKi

ρpKi + γp +µp
, (21)

Ψ
RI

0
ρm = − ρmµ̃hKi

β2ω +ρmµ̃hKi +µmµ̃h
, Ψ

RI
0

σ =− σ

1−σ
(22)

Ψ
RI

0
Ki

= −
Ki [ρmµ̃h (2ρpKi + γp +µp)+ρp (β2ω +µmµ̃h)]

(β2ω +ρmµ̃hKi +µmµ̃h)(ρpKi + γp +µp)
. (23)

Remark 1. From the expressions of the local sensitivity indices above, and using the
fact that 0 < σ < 1 we see that

(i) Ψ
RI

0
r =Ψ

RI
0

β1
= 1.

(ii) 0 <Ψ
RI

0
ω ,Ψ

RI
0

γp < 1.

(iii)−1 <Ψ
RI

0
µm ,Ψ

RI
0

µ̃h
,Ψ

RI
0

β2
,Ψ

RI
0

µp ,Ψ
RI

0
ρp ,Ψ

RI
0

ρm < 0.

(iv)
∣∣∣ΨRI

0
ω

∣∣∣= ∣∣∣ΨRI
0

µ̃h

∣∣∣ and
∣∣∣ΨRI

0
µm

∣∣∣< ∣∣∣ΨRI
0

µ̃h

∣∣∣.
(v) −1 <Ψ

RI
0

σ < 0 if σ < 1
2 and Ψ

RI
0

σ ≤−1 if σ ≥ 1
2 .

(vi) Ψ
RI

0
Ki

< 0.

Thus, based on the sensitivity indices, a 1% increase in r, respectively β , while
holding the other parameters fixed, will respectively produce a corresponding 1%
increase in RI

0. This is evident given the linear relationship between RI
0 and each

of these parameters. A 1% increase in ω , respectively γp, with all other parameters
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held fixed, correspondingly produces a less than 1% increase in RI
0, meanwhile a

1% increase in each of µp, µ̃h, β2, µp, ρp, ρm produces a corresponding less than
1% decrease in RI

0. Hence, these are desirable target parameters for control, when
it is feasible.

We are now in a position to use the computed normalized local sensitivity coef-
ficients to investigates relative changes in RI

0 based on specified parameter values;
see the example that follows.
Example: For the following values, which were baseline values in [34],

ω =0.25, µ̃h=5×10−8, β1= 5×10−7, β2=5×10−7, µp=0.0091, γp=0.5,

r=16, σ =0.0064, µm=48, Ki=4×103, ρp=0.78×10−5, ρm=0.98×10−5,

}
(24)

we obtained specified values of the normalized local sensitivity coefficients, sum-
marized in Table 4 and illustrated in Figure 1.

Table 4: local sensitivity indices of the reproduction number for the general model
with immunity uysing the parameter values given in (24).

Para. (p) Elasticity Indices Expression (s̃p) Elasticity Index Values
β1 1 1.0000
r 1 1.0000
ω

µm µ̃h+ρm µ̃hKi
β2ω+µ̃hµm+ρm µ̃hKi

0.9505

µ̃h − µm µ̃h+ρm µ̃hKi
β2ω+µ̃hµm+ρm µ̃hKi

−0.9505

µm − µm µ̃h
β2ω+µ̃hµm+ρm µ̃hKi

−0.9498

γp
ρpKi+µp

ρpKi+γp+µp
0.0746

Ki −Ki[ρm µ̃h(2ρpKi+γp+µp)+ρp(β2ω+µm µ̃h)]
(β2ω+ρm µ̃hKi+µm µ̃h)(ρpKi+γp+µp)

−0.0585

ρp − ρpKi
ρpKi+γp+µp

−0.0578

β2 − ωβ2
β2ω+µ̃hµm++ρm µ̃hKi

−0.0495

µp − µp
ρpKi+γp+µp

−0.0168

σ − σ

1−σ
−0.0064

ρm − ρm µ̃hKi
β2ω+ρm µ̃hKi+µm µ̃h

−0.0008

The interpretation of the elasticity indices in the third column of Table 4 are as
follows: For the specified parameter values given in (24), RI

0 is most sensitive to β1,
the contact rate between HRBCs and free-floating merozoites, and r, the number of
merozoites released per bursting IRBCs. They both have index value of +1.0, as ex-
pected from the computation of the index function. Variation or uncertainty in these
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parameters will bring more variations or uncertainties in RI
0 and consequently, the

outputs of the model. In particular, for all variables, if 10% more (respectively less)
merozoites are released (that is r changes by 10%) or come in contact with HRBCs
(that is β1 changing by 10%), RI

0 increases (respectively decreases) by 10%, each.
The next set of parameters to which RI

0 is most sensitive to are: ω = Λ − µh, the
per capita linear growth rate; µ̃h, the death rate of HRBCs due to density dependent
contact inhibition, and µm, the per capita natural death rate of merozoites. Their
respective normalized elasticity indices are ≈ +0.9505, − 0.9505 and −0.9498.
Among the three parameters, the one most feasible to control is µm, with index
value of ≈−0.9498. Thus, with all other parameters held fixed, a 10% increase (re-
spectively decrease) in the natural death rate of free-floating merozoites, produces a
corresponding decrease (respectively, increase) of approximately 9.5% in RI

0 .
The index values for the other parameters, given in order of decreasing magni-

tude are: γp, rate at which IRBCS change paths, either bursting to release merozoites
or continuing towards the gametocytogenesis path; Ki, the carrying capacity of in-
nate immune cells; ρp, the elimination rate of IRBCs by innate immune cells; β2, the
absorption rate of free merozoites by IRBCs; µp, the elimination rate of parasitized
red blood cells; σ , the proportion of merozoites that continue the path towards ga-
metocytogenesis and ρm, the elimination rate of merozoites by innate immune cells.
They each have magnitude less than 0.1 as shown in Table 4 and can be described
similarly. What is clear is that if we focus on parameters that can be controlled in or-
der to reduce RI

0 and thereby reducing malaria parasitemia within a human-host, we
need to reduce the infection rate β1, the number of merozoites released per bursting
IRBC or increase the per capita natural death rate of free merozoites, µm.

2.2 Graphical results showing the local impact of the parameters
on RI

0

First, we present a plot of the sensitivity indices of the parameters that are associated
to RI

0. See Figure 1.
The model parameters influence the size of the reproduction number RI

0 in dif-
ferent ways. Moreover, the sensitivity indices shown in Table 4 for the parameters
whose indices differ from 1, will change when some of the other associated param-
eters in the computed index change. Thus, it is important to investigate how the
change in RI

0 is manifested with an increase or decrease in a specified parameter, or
a combination of parameters. Beginning with µm, while keeping other parameters
fixed, we plot RI

0 and also the size of the normalized local sensitivity coefficients

Ψ
RI

0
p against µm. The results are illustrated in Figures 2 and 3 for the case where

the parameters ω, µ̃h,γp,r,σ ,Ki,ρp,ρm are as stated in the parameter example equa-
tion (24), while β1 and β2 are each increased 10 folds so that β1 = 5× 10−6 = β2
and µp is increased from 0.0091 to 0.07. From the plots, as the free merozoites per
capita death rate, µm, is increased from 24 to its maximum value of 72, keeping
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Fig. 1: Local sensitivity indices of RI
0 for each parameter based on the example

parameters given in (24). Here, σ̃ = 1−σ .

other parameters fixed, RI
0 decreases from 1.4 > 1 to 0.6 < 1, and the normalized

local sensitivity, Ψ
RI

0
µm , decreases from −0.91 to −0.96 or increases from | − 0.91|

to |− 0.96|. This should be expected because a higher µm corresponds to a shorter
window for parasites to infect HRBCs. This illustrates that we can achieve parasite
clearance by controlling µm. This can be done via drugs that speed up the death rate
of free merozoites within the human blood stream.

Fig. 2: Plot of RI
0 vs. µm
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Fig. 3: Plot of Ψ
RI

0
µm vs. µm

Next we investigate the relative impacts of ρp and also ρm on Ψ
RI

0
p and RI

0. The

contour plots of Ψ
RI

0
µm (ρp,ρm) and RI

0(ρp,ρm), as functions of ρp and ρm, for the
parameter set β1 = 5× 10−6 = β2, µp = 0.07 and ω, µ̃h,γp,r,σ ,Ki,µm as stated in
equation (24) are shown in Figures 4a and 4b, where Figure 4a illustrates the con-

tour plots of the normalized local sensitivity, Ψ
RI

0
µm (ρp,ρm) and Figure 4b illustrates

the contour plots of the basic reproduction number, RI
0(ρp,ρm), both as functions

of ρp and ρm. It is evident that increasing each of the parameters as well as both
parameters have a significant effect in reducing RI

0.
Furthermore, we illustrate the individual and combined impacts of the parame-

ters β1 (contact rate) and µm on RI
0, illustrated in Figure 5. As β1 increases, RI

0
increases, however, its value decreases with increase in µm, which confirms the pre-
vious results. So one of the ways to eliminate or reduce the parasite density within
the human blood is to shorten the life expectancy of merozoites so that they can
die before they have the opportunity to infect HRBCs. Another way is by inhibiting
successful contacts between merozoites and HRBCs. Similar plots can be obtained
for the other parameters to see their effect on reducing the reproduction number RI

0.
From the normalized local sensitivity indices computed in equations (18)-(22), it is
evident that although these indices lie in [−1,1], their magnitude, whether closer to
one or closer to zero will depend on the other parameters present in the expression.

As an example, Ψ
RI

0
γp =

ρpKi+µp
ρpKi+γp+µp

as shown in equation (20), and clearly depends
on ρpKi + µp. As ρpKi + µp → 0 (which can occur for small ρp and µp values),

Ψ
RI

0
γp → 0. If, on the other hand, ρpKi +µp→ L→ ∞, (which can occur for large Ki

values and reasonable ρp and µp values, Ψ
RI

0
γp → 1. We note here that the statement

→ ∞ just represents, from a mathematical perspective, a large value within feasible
biological ranges. We illustrate this point by plotting 3D surfaces of some of the
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(a)

(b)

Fig. 4: Contour plots of Ψ
RI

0
µm (ρp,ρm) (4a) and RI

0(ρp,ρm) (4b) as functions of ρp

and ρm, with ρp ranging from 0.78× 10−6 to 0.98× 10−3 and ρm ranging from
0.9×10−5 to 0.9×10−1. All other parameters are as given in equation (24).
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Fig. 5: Contour plot of RI
0(µm,β1) as functions of ρp and ρm, with µm ranging from

48 to 72 and β1 from 5× 10−9 to 3× 10−6. Except for β2 = 5× 10−6, all other
parameters are as given in equation (24)

elasticity indices as functions of two input parameters that co-impact the index; see
Figures 6-9.

In Figures 7-9 we have shown that in general, when two parameters are com-
bined, their combined effect on RI

0 is generally stronger and will have a stronger
effect on impacting parasitemia.

3 Discussion and conclusion

We set out to investigate the local sensitivity analysis of the threshold disease pa-
rameter, the basic reproduction number RI

0, for a within-human host model of the
immuno-pathogenesis of the malaria parasites, originally developed in [34]. By
computing the normalized local sensitivity coefficients for R l

0, we investigated the
impacts of certain key control parameters and the relative impacts of pairs of pa-
rameters to this threshold value when other parameters are held fixed. We also gave
a brief review of two local sensitivity methods: the indirect finite-difference method
and the direct differential method. The direct differential method is a fundamental
local sensitivity analysis method which involves calculating partial derivatives of
the model output with respect to the input parameters.
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(a) 3D-plot of Ψ
RI

0
µm vs. µm as x−axis and ρm as y−axis

(b) 3D-plot of Ψ
RI

0
µm vs. β2 as x−axis and ρm as y−axis

Fig. 6: A 3D plot of the local sensitivity index function of RI
0 to µm, denoted by

Ψ
RI

0
µm and defined in equation (18), with respect to µm and ρm (graph (a)),and also

with respect to β2 and ρm (graph (b)). In Sub Figure (6a), µm ranges from 48 to 72
while ρm ranges from 10−8 to 0.1, with β2 = 5× 10−6 and all other parameters as
given in equation (24). In Sub Figure 6b, β2 ranges from 5×10−7 to 5×10−6 and
ρm ranges from 10−8 to 0.1, with all other parameters as given in equation (24).
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(a) 3D-plot of Ψ
RI

0
β2

vs. β2 as x−axis and ρm as y−axis

(b) 3D-plot of Ψ
RI

0
β2

vs. ω as x−axis and ρm as y−axis

Fig. 7: A 3D plot of the local sensitivity index function of RI
0 to β2, denoted by

Ψ
RI

0
β2

and defined in equation (20), with respect to β2 and ρm (graph (a)), and also
with respect to ω and ρm (graph (b)). In Sub Figure 7a, β2 ranges from 5× 10−7

to 5× 10−6 and ρm ranges from 10−8 to 0.1, with all other parameters as in (24).
In Sub Figure 7b, ω ranges from 0.036 to 0.5, with β2 = 5× 10−6 and all other
parameters fixed as in (24).
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(a) 3D-plot of Ψ
RI

0
γp vs. γp as x−axis and ρp as y−axis

(b) 3D-plot of Ψ
RI

0
γp vs. γp as x−axis and µp as y−axis

Fig. 8: A 3D plot of the local sensitivity index function of RI
0 to γp, Ψ

RI
0

γp defined
in equation (20). Sub Figure 8a is a plot with respect to γp ranging in [0,1] and ρp
ranging in [10−8,0.1] while Sub Figure 8b is a plot with respect to γp ∈ [0,1] and
µp ∈ [0.036,0.2]. All parameters are held fixed as in as (24) with β2 = 5×10−6.

In general, sensitivity analysis allows for, when possible, the exact computation
of the sensitivities of a systems response to variations in the systems parameters,
around their nominal values, which then allows for a discussion on the relative
influence of the input parameters to the model results. With this, a discussion on
parameters that are less or more important can be presented which could provide in-
formation on whether a parameter may be eliminated from the model system [6, 12].
However, it is worth noting that even through a parameter may have great influence
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(a) 3D-plot of Ψ
RI

0
ρp vs. γp as x−axis and µp as y−axis

(b) 3D-plot of Ψ
RI

0
ρp vs. γp as x−axis and ρp as y−axis

Fig. 9: A 3D plot of the local sensitivity index function of RI
0 to ρp, Ψ

RI
0

ρp , defined
in equation (21). Sub Figure 9a is a plot with respect to γp ranging in [0,1] and µp ∈
[0.036,0.2] while Sub Figure 9b is a plot with respect to γp ∈ [0,1] and ρp ranging
in [10−8,0.1]. All other parameters are held fixed as in (24) with β2 = 5×10−6.

on a system’s output, the question of whether in reality that parameter may be fea-
sible, easy, efficient and cost effective to control is worth investigating.

For the within-human-host immuno-pathogenenic malaria model presented, we
applied the direct differential method to investigate the local sensitivity of RI

0 to
the model parameters. The parameters affect the densities of HRBCs, IRBCs, free
merozoites, the early/immature stage (stages I -IV) and late/matured stage (stage V)
gametocytes, as well as the functioning of the human innate immune and adaptive
immune system effectors. The basic reproduction number, RI

0, was computed using
the next generation matrix (which matched the threshold parameter that determines
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the existence of the parasitized steady state solutions), from which the normalized
local sensitivity coefficients in relation to each parameter were computed. For a rep-
resentative feasible parameter set, the numerical values of the normalized sensitivity
coefficients were computed as summarized in Table 4.

Based on the computed indices, we can explore the impact of varying a parameter
value on the ability of the parasite to persist in a human, that is when the reproduc-
tion number RI

0 surpasses 1. This is important as it can inform on possible parasite
control parameters since normalized local sensitivity coefficients quantify the per-
cent change that results in an output variable based on a one percent change in an
input parameter, keeping other parameters fixed [29, 38]. Note that these normal-
ized local sensitivity coefficients are dimensionless and highlight relative changes.
For our model, the normalized indices are shown on Table 4. Negative normalized
local sensitivity coefficients indicate that RI

0 is indirectly proportional to the cor-
responding parameter and so an increase (respectively decrease) in the parameter
would produce a corresponding decrease (respectively increase) in RI

0, of size rel-
ative to the size of the index value. On the other hand, parameters with positive
index are directly proportional to RI

0, and changes are in the same direction so that
an increase (respectively decrease) in the parameter would produce a corresponding
increase (respectively decrease) in RI

0. In our model, parameters that are biologi-
cally feasible and reasonable to control are the free-floating merozoite death rate
µm, which has a large negative elasticity index. Thus with other parameters fixed,
speeding up the deaths of free merozoites will have a significant impact on the re-
duction of RI

0 . More specifically, a 10% increase in µm produced a corresponding
9.5% reduction in RI

0 when other parameters are as shown in (24). From Figure 8b,
the size of this impact is muted and can be enhanced as well when the sizes of other
parameters are considered. Another parameter of interest is γp, which determines
the bursting time frame for parasitized red blood cells and hence successful passage
of parasites towards the sexual stages, the gametocytes, for those IRBCs that do not
burst. From Table 4 the index value for γp is 0.0746 indicating that a 10% reduc-
tion in this parameter produces a corresponding 0.75% reduction in RI

0 when other
parameters are as shown in (24). Both of these parameters are biologically feasible
control parameters.

To highlight the previous discussion, the Plasmodium falciparum parasites ex-
hibit different life cycle stages. Stopping or slowing one of these stages will stop
or slow down the production of merozoites within a human or the development in a
human as well as its transmission to mosquitoes. This is mostly achieved via anti-
malarial drugs. However, in recent years, significant increase in drug resistance has
propelled researchers to expand their research questions and endeavor and consider
other strategies that can either speed up merozoites killing, slow gametocyte devel-
opment and persistence in the bloodstream, as well as find ways to block transmis-
sion to mosquitoes. These control measures can occur through the use of effective
non-resistant anti-malarial drugs or vaccines (various vaccine constructs are under-
going evaluation in clinical trials while others are in advanced preclinical develop-
ment phase [33]) designed to disrupt parasite reproduction and further development
in the mosquito’s midgut, and can thus serve to break the life cycle of the parasite
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[13]. A vaccine or effective drug that kills free merozoites quickly (an increase in
µm by shortening the life expectancy of merozoites) or seeks to inhibit bursting of
IRBCs (a decrease in γp) or seeks to inhibit the ability of merozoites to commit
to switching to the sexual stages or one that inhibits the successful maturation of
immature gametocytes within a human or a successful transmission of gametocytes
from human to mosquito will be desirable and can play a great role in reducing and
possibly eliminating parasitemia in a human. This would produce a corresponding
positive effect in reducing gametocyte transmission to mosquitoes. Hence a study
as the one done here, is crucial in identifying important and feasible control param-
eters.

Our model did take into consideration the behaviour of the innate and adaptive
immune behaviors. Feasible and realistic parameters that can activate the immune
cells and enhance their effect in killing parasites are important. From Table 4, the
elasticity index value for ρm is small indicating that its individual impact on RI

0 may
be small. However, the influence of µm on RI

0 can be dampened or enhanced when
both β2 and ρm (see Figure 6b) parameters are varied. Hence, a combine control
strategy that inhibits contact between HRBCs and merozoites as well as increases
the efficiency of innate and adaptive immune responses in killing, blocking, inhibit-
ing parasites growth would be desirable. A way this can potentially be achieved is
through vaccines that can enhance the activities of the innate and adaptive immune
system in their actions against parasites.

From our discussions above our normalized local sensitivity analysis for RI
0 does

give insight to the significance of some parameters in reducing malaria parasitemia
through their effects on RI

0. It also highlights which parameters are highly corre-
lated with the output RI

0. We comment that although there are generally two broad
techniques of sensitivity analysis, local sensitivity analysis and global sensitivity
analysis, we elected to use a local sensitivity analysis in our work. As noted in [6],
an objective of local sensitivity analysis is in the analysis of local behaviours of a
system’s response around a chosen point or trajectory in the combined phase space
of parameters and state variables. Thus it focusses on the impact of small perturba-
tions on the model outputs [6]. On the other hand, global sensitivity analysis helps to
understand how the model outputs are affected by large variations of the model in-
put parameters when all the input factors are varied simultaneously. The sensitivity
is evaluated over the entire range of each input factor [38]. We believe that a lo-
cal sensitivity analysis for the within-human host parasite dynamics is a reasonable
choice because one can see the impacts of small variations. Moreover, given that the
parasite forms are very different and behave differently in their residing systems, a
local sensitivity analysis provides reasonable insights as to changes in parameters to
the model outputs within each local system. See [19, 29] for some examples on the
use of local sensitivity analysis (LSA) in biological and physical systems.
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