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1 Introduction

Both biology and mathematics have existed as well established branches of science
for hundreds of years and both, maybe not in a well defined way, have been with
the humankind for a couple of thousands of years. Though nature was studied by
the ancient civilizations of Mesopotamia, Egypt, the Indian subcontinent and China,
the origins of modern biology are typically traced back to the ancient Greece, where
Aristotle (384–322 BC) contributed most extensively to its development. Similarly,
the ancient Babylonians were able to solve quadratic equation over four millennia
ago and we can see the development of mathematical methods in all ancient civilisa-
tions, notably in China and on the Indian subcontinent. However, possibly again the
Greeks were the first who studied mathematics for its own sake, as a collection of ab-
stract objects and relations between them. Nevertheless, despite the fact that the de-
velopment of such a mathematics has not required any external stimuli, an amazing
feature of the human mind is that a large number of abstract mathematical constructs
has proved to be very well suited for describing natural phenomena.This prompted
Eugene Wigner to write his famous article The Unreasonable Effectiveness of Math-
ematics in the Natural Sciences, see e.g. [9]. This paper somehow summarizes sev-
eral centuries of successful interplay of mathematics with engineering and physics
where, on one hand, the need to precisely describe the physical world drove mathe-
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matics as a necessary tool for the task and, on the other, mathematical theories gave
rise to new physical discoveries. For the former, one could mention the discover-
ies of Neptune and Pluto on the basis of careful applications of Newton’s laws of
motion. Also the theory of differential equations, that forms a substantial portion of
mathematics created in the 19th and 20th century, was developed to explain newly
observed physical phenomena such as electromagnetism, heat conduction or gravi-
tation, as well as to help to understand how fluids flow that is essential for naval and
aeronautical engineering. Similarly, functional analysis originally was developed to
provide a sound foundation for quantum mechanics. Conversely, purely theoretical
equations of General Relativity paved the way to discoveries of physical phenomena
such as gravitational lensing or gravitational waves, purely mathematical solutions
of the Dirac equations turned out to be physical objects called positrons and the cel-
ebrated Higgs boson was predicted on the basis of group theoretical foundations of
the Standard Model. On the other hand, [8], for most of its history, biology was be-
ing developed using colloquial, everyday language to describe its observations and
laws with mathematics playing there at best just an auxiliary role, such routine cal-
culations and statistical analysis of experimental data. However, over the last couple
of centuries, biology’s five revolutions has brought biology closer to the quantita-
tive sciences and technology, and have changed the way the scientists think about
the living matter, [7]. Following op.cit., these revolutions were: the microscope, the
linnaean classification, theory of evolution, genetics and the discovery of the DNA
structure. If we consider the role played by chance, and hence probability theory, in
the theory of evolution, the abstract thinking of Georg Mendel who, on the basis of
numerical patterns in the frequencies of particular features of organisms, postulated
the existence of agents (now called genes) that are responsible for their occurrence,
or the numerical rule observed by Chargaff and Bragg’s law of diffraction that paved
way to understanding the complex geometry of the double helix of DNA, we see that
seeds of the new revolution have been already sown. The author of [7] (any many
other books on mathematical biology) Ian Stewart, calls the coming sixth revolution
the mathematical revolution.

2 Mathematical modelling

The reason for this is the same as in physical sciences. As we mentioned earlier,
many mathematical constructs, for unknown reasons we should be grateful for, are
well suited to describe the environment we live in. In other words, there is a cor-
respondence between parts of the real world and objects developed and studied by
mathematics. Establishing such relations is refereed to as mathematical modelling.
Despite the importance of this concept, it is not well defined and we shall devote a
few lines to describe it in detail.

Often by mathematical modelling people understand statistical analysis of the
available data and inference based on the found correlations. While very important
in many applications, one should not mistake correlations for causations, under-
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standing which is the basis for mathematical modelling. That is, we try to under-
stand the rules governing a particular phenomenon of interest and translate them
into mathematical language, which we call a mathematical model. The model often,
but not always, takes the form of a system of equations balancing the quantities rel-
evant to the model. Then we apply mathematical methods to analyse it and finally
try to understand the implications of the obtained results for the original discipline.
For this, we have to interpret the solution, or any other information extracted from
the model, as the statement about the original problem so that they can be tested
against observations and serve as a basis for the design of further experiments the
outcome of which, ideally, should agree with the predictions of the model, serving
as it’s validation. However, often the constructed model is over-simplified so that
there is insufficient agreement between the experimental data and the predictions of
the model, or the model turns out to be too complicated to yield itself to any mean-
ingful and robust analysis. Then, in either case, we have to return to the first step of
the modelling process to try to remedy the problem. Thus mathematical modelling
usually is an iterative procedure, shown on the figure, as it is very difficult to achieve
a proper balance between simplicity and accuracy of the model.

Problem
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Analysis
and

results
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comparison
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Fig. 1 The process of mathematical modelling.

Mathematical modelling is a difficult subject the reason being that there are no
set rules and the understanding of the ‘right’ way to model only can be reached by
familiarity with a number of examples. As mentioned above, a good model should
have predictive powers; that is, the model based on an available set of observations
should give correct answers when new observations appear. Here a good example is
the General Theory of Relativity – it predicted the light deflection by stars, gravita-
tional redshift and gravitational waves, phenomena not known when the theory was
developed. A good modelling procedure should also produce nested models – an
improved model should contain earlier working models as subcases. For instance,
Newton’s mechanics is contained in both Special and General Theories of Relativ-
ity provided the described objects move with small velocities and away from large
masses.

It is important to recognize that mathematical modelling is not a part of mathe-
matics – one cannot prove that a given model is correct and always will give valid
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predictions. This often is a source of misunderstandings as the decision-makers and
the general society, have a tendency to treat results of modelling as universally valid,
whereas they always are conditional – one has to understand the assumptions made
while building the model to apply it with a reasonable success. A spectacular exam-
ple of such a misuse of a model is the history of the Long Term Capital Management
hedge fund, whose board of directors included the 1997 Nobel Memorial Prize in
Economic Sciences winners Myron S. Scholes and Robert C. Merton. The basis of
operation of the fund was the famous Black-Scholes equation for determining the
value of derivatives. Initially successful, with annualized return reaching over 40%,
in 1998 the fund lost 4.6 billion USD in less than four months following the 1997
Asian financial crisis and 1998 Russian financial crisis. The reason for the collapse
was that the validity of Black-Scholes model requires the market fluctuations to be
small and this assumption fails during large crises.

Thus, it is important to understand that while mathematical models are indispens-
able tools for cheaply testing various scenarios in engineering or natural, medical,
economical, or social sciences, they only give simplified descriptions of real-life
problems and should not be used without understanding, like cooking recipes.

3 Mathematical models in biology

As we said earlier, the ability of mathematics to create relatively faithful images of
reality has been utilised for years in physics where often, instead of talking about
real objects, we talk about their mathematical models. In principle, we should be
able to do the same in biology. One can, of course, talk about living matter using
the everyday language – indeed, this was the case for most of the history. However,
mathematical language offers an array of new constructs together with precise rules
of dealing with them, thus allowing for creating of a precise picture of the real world,
much richer than that accessible for everyday language description. Thanks to the
rules of mathematics we can carry out thought experiments about possible behaviour
of the studied objects, that are rather impossible if we restrict ourselves to the word
descriptions of them, and the results of these thought experiments can be tested
against observational data. Moreover, in contrast to the descriptive word models,
the mathematical ones yield quantitative results that add to their applicability and
accuracy of the predictions.

Why then do we talk about the mathematical revolution as incoming rather than
well established? Why did a great mathematician I. M. Gelfand write, [1],

Eugene Wigner wrote a famous essay on the unreasonable effectiveness of mathematics
in natural sciences. He meant physics, of course. There is only one thing which is more
unreasonable than the unreasonable effectiveness of mathematics in physics, and this is the
unreasonable ineffectiveness of mathematics in biology.

The reason for this is that biology is incredibly complex. A number of renowned
mathematicians and mathematical biologists have tried to explain this. A. Friedman
writes in [3] that if the unit in physics is an atom, then the unit of life is a cell,
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but a cell is much more complex. Not only does a typical mammalian cell contain
about 300 million molecules, it also maintains control and order among them. M.
Reed elaborates further in [4] by listing the following fundamental difficulties of the
field: lack of the fundamental principle such as Newton’s Law in physics, diversity
and specialization (that can be possibly explained as the fact that, due to evolution,
the same functionality does not mean structural similarity), interplay of levels, diffi-
culties of experimentation (due to emergent behaviour coming from interactions of
various levels of organisation that disallows studying the system through its isolated
parts), as well as the problems of feedback control (that is somehow related to the
previous two).

Despite these difficulties, mathematical biology has been growing at a very fast
rate, confirming I. Stewart’s prediction about the incoming mathematical revolu-
tion in biology. The first, and the oldest, role of mathematics is providing a unified
language for biological processes. As a mathematical object, diffusion is the same
irrespective of whether we are talking about the Brownian motion, spreading of or-
ganisms, or transport of molecules across the cell membrane, as long the motion can
be interpreted as a random walk. Mathematics has well developed tools for dealing
with such problems and it is not necessary to develop a special theory for each pro-
cess where such a motion occurs. However, our ambitions go further. Mathematics
not only should be the language of biology but it should provide a meaningful input
into the understanding of biology and, conversely, draw an inspiration from it for its
own development. Whether it is possible, currently is a subject of a debate, as shown
in the Gelfand’s quote. Some minimalists do not believe that mathematics can go be-
yond being a supplier of auxiliary tools for biologists, but many others, such as I.
Stewart, A. Friedman or M. Reed, represent an opposite view. The latter, in [5], ar-
gues that there is a true exchange of ideas in both directions. Most people are aware
of applications of ordinary and partial differential equations, with a celebrated ex-
ample of a Nobel Prize winner Sir Donald Ross who, though not a mathematician
himself, had a sufficiently mathematical mind to develop the first compartmental
model of malaria, [6], possibly launching this way modern mathematical epidemi-
ology. Similarly, in population theory, if certain conditions are satisfied, even sim-
ple differential equations, such as the logistic equation, provide results displaying
amazing agreement with the data. For instance, it describes the population of the
US from 1790 till 1950 with less than 3% error, see e.g. [2]. It is important to em-
phasize that applications of mathematics to biology are not restricted to differential
equations in epidemiology, ecology or population theory. Following [5], [3] and the
references therein, we mention applications of graph theory in epidemiology and
gene networks, topology in understanding heart fibrillation, algebraic topology in
neuroscience or category theory in systems biology, not to mention combinatorics,
probability theory, stochastic and, in particular, branching processes that has be-
come central in genetics, or optimal control techniques used to determine the best
cancer treatment.

The author of [8] wrote that the measure of mathematization of a particular dis-
cipline is its influence on mathematics. While recognizing the mathematization of
physics in that sense, in 1992 he was doubtful about mathematization of biology.
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In 2015, however, in [5] the author argues that in the 20th century the theory of
evolution and genetics influenced the fields of probability theory and stochastic pro-
cesses, Hodgkin–Huxley equations and Turing’s theory of morphogenesis gave a
momentum to the theory of reaction–diffusion equations and pattern formation, and
sequencing and reconstruction of the human genome created new problems in com-
binatorics, probability and statistics. While this research continues, new inspirations
in mathematics have emerged recently. Again following [5], we mention new prob-
lems in conformal geometry created by the question of teeth comparison in paleon-
tology, new results in the theory of dynamical systems prompted by problems posed
by such diverse fields as biochemical reactions and central pattern generators in the
nervous system; in particular, the coarse-grained methods for classification of dy-
namical systems is due to the analysis of complex systems with only approximately
known parameters.

4 Conclusion

The above description is by no means exhaustive but certainly it shows the breadth
of mathematical techniques used at the interface with biology. While, as mentioned
earlier, we cannot claim that mathematical thinking and mathematics were not used
in biology before, it is clear that the scale of mutual interactions has enormously
grown in the last couple of decades to the extent that in some disciplines the research
has been determined by mathematical modelling. This justifies the opinion that he
mathematical revolution in biology is at our doorstep or, in the words of [3], that
mathematics is the future frontier of biology and biology is the future frontier of
mathematics.

It is our belief that Africa and, in particular, South Africa are ready to join
this revolution. Africa, unfortunately, is the world hub for deadly diseases such as
HIV/AIDS, malaria or Ebola and also has a large percentage of the population suf-
fering from malnutrition, with frequently occurring famines. On the other hand, it
has an amazing diversity of the environment and wildlife that, properly managed,
could be the source of wealth for the whole continent. So, there is a great need
for well trained epidemiologists, ecologists and mathematical biologists ready to
develop new methods and join the collaboration with health and natural scientists.
Fortunately, there is a huge interest among the students across Africa to study math-
ematical biology and epidemiology. Most bigger universities in Africa offer courses
in these topics with some of them having mathematical biology among their Ma-
jors. The number of postgraduate students graduating with theses in mathematical
biology is growing at a fast rate. The South African government and the National
Research Foundation of South Africa have recognized the need to support this en-
deavour by creating to Research Chairs in the field: in Mathematical and Theoretical
Biosciences (jointly held by the Stellenbosch University and the African Institute of
Mathematical Sciences in Muizenberg, SA) and in Mathematical Models and Meth-
ods in Biosciences and Bioengineering at the University of Pretoria. Through these
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Chairs many a further initiatives in the biomathematics have been supported. The
Chair in Mathematical and Theoretical Biosciences has been involved in ecological
problems and, in particular, in the study biological invasion. The focus of the Chair
in Mathematical Models and Methods in Biosciences and Bioengineering is more
directed towards population dynamics and epidemiology, where the Chair joined
the National Research Foundation Community of Practice project, a national cluster
of SARChI Research Chairs working on malaria and, in particular, on developing
transmission blocking drugs. These, and many other initiatives, prove that mathe-
matical biology in Africa is on the right track for providing a meaningful support
in fight against diseases and designing knowledge based tools for the environmental
management, control and protection.
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