A family of recurrence generated sigmoidal functions based on the Log-logistic function. Some approximation aspects
DOI:
https://doi.org/10.11145/bmc.2018.07.197Abstract
In this note we construct a family of recurrence generated sigmoidal functions based on the Log--logistic function. The study of some biochemical reactions is linked to a precise Log--logistic function analysis.
We prove estimates for the Hausdorff approximation of the Heaviside step function by means of this family. Numerical examples, illustrating our results are given. The plots are prepared using CAS Mathematica.
Downloads
Published
Issue
Section
License
The journal Biomath Communications is an open access journal. All published articles are immeditely available online and the respective DOI link activated. All articles can be access for free and no reader registration of any sort is required. No fees are charged to authors for article submission or processing. Online publications are funded through volunteer work, donations and grants.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).