Elemental access to limit cycle existence in Biomath education.
DOI:
https://doi.org/10.11145/bmc.2019.12.247Abstract
This paper originated from the desire to develop elementary calculus based tools to empower students, not necessarily with a strong mathematical background, to test predator-prey related models for boundedness of solutions and for the existence of limit cycles. There are several well-known methods available to prove, or disprove, the existence of bounded solutions to systems of differential equations. These methods rely on Liénard's theorem or using Dulac or Lyaponov functions. The level of mathematics required in the study of differential equations is not addressed in the courses presented on the first year level, and students in biology, ecology, economics and other fields are often not suitably equipped to perform these advanced techniques.
The conditions under which a unique limit cycle exists in predator-prey systems is considered a primary problem in mathematical ecology. A great deal of mathematical effort has gone into trying to establish simple, yet general, theorems which will allow one to decide whether a given set of nonlinear equations has a limit cycle or not. We introduce a method to first determine the boundedness of solution trajectories in such a way that the transformation to a Liénard system or the use of a Dulac function can be avoided. Once boundedness of trajectories has been established, the nature of the equilibrium points reduces to simple eigenvalue analysis. The Elemental Limit Cycle method (ELC) provides elementary criteria to evaluate the nature of the pivotal functions of a system which will indicate boundedness and may be applicable to more general models.
Downloads
Published
Issue
Section
License
The journal Biomath Communications is an open access journal. All published articles are immeditely available online and the respective DOI link activated. All articles can be access for free and no reader registration of any sort is required. No fees are charged to authors for article submission or processing. Online publications are funded through volunteer work, donations and grants.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).