On the Homogenization of a Diffusion Problem with Flux Jump
DOI:
https://doi.org/10.11145/cb.v3i1.605Abstract
Using the periodic unfolding method introduced in [1], the homogenization of a diffusion problem in a highly heterogeneous mediumВ formed by two constituents separated by an imperfect interface is studied. The main feature of our settingВ is represented byВ the discontinuity of the solution and of the flux. Depending on the magnitude and the formВ of these jumps, various models arise atВ the limit. Such models can beВ used for describing the calcium dynamics in biological cells and represent a generalization of some existing results in the literature (see [2]-[4]).Downloads
Published
Issue
Section
License
The journal Biomath Communications is an open access journal. All published articles are immeditely available online and the respective DOI link activated. All articles can be access for free and no reader registration of any sort is required. No fees are charged to authors for article submission or processing. Online publications are funded through volunteer work, donations and grants.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).