Efficient Implicit Runge-Kutta Methods for Fast-Responding Ligand-Gated Neuroreceptor Kinetic Models
DOI:
https://doi.org/10.11145/j.biomath.2015.12.311Keywords:
implicit Runge-Kutta, neuroreceptor model, numerical stiffness, ODE simulationAbstract
Neurophysiological models of the brain typically utilize systems of ordinary differential equations to simulate single-cell electrodynamics. To accurately emulate neurological treatments and their physiological effects on neurodegenerative disease, models that incorporate biologically-inspired mechanisms, such as neurotransmitter signalling, are necessary. Additionally, applications that examine populations of neurons, such as multiscale models, can demand solving hundreds of millions of these systems at each simulation time step. Therefore, robust numerical solvers for biologically-inspired neuron models are vital. To address this requirement, we evaluate the numerical accuracy and computational efficiency of three L-stable implicit Runge-Kutta methods when solving kinetic models of the ligand-gated glutamate and gamma-aminobutyric acid (GABA) neurotransmitter receptors. Efficient implementations of each numerical method are discussed, and numerous performance metrics including accuracy, simulation time steps, execution speeds, Jacobian calculations, and LU factorizations are evaluated to identify appropriate strategies for solving these models. Comparisons to popular explicit methods are presented and highlight the advantages of the implicit methods. In addition, we show a machine-code compiled implicit Runge-Kutta method implementation that possesses exceptional accuracy and superior computational efficiency.Downloads
Published
Issue
Section
License
The journal Biomath is an open access journal. All published articles are immeditely available online and the respective DOI link activated. All articles can be access for free and no reader registration of any sort is required. No fees are charged to authors for article submission or processing. Online publications are funded through volunteer work, donations and grants.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).