Non-monotonicity of Fano factor in a stochastic model for protein expression with sequesterisation at decoy binding sites
DOI:
https://doi.org/10.11145/j.biomath.2017.10.217Keywords:
Gene Expression, Master Equation, Small Noise Approximation, Stochastic SimulationAbstract
We present a stochastic model motivated by gene expression which incorporates unspecific interactions between proteins and binding sites. We focus on characterizing the distribution of free (i.e. unbound) protein molecules in a cell. Although it cannot be expressed in a closed form, we present three different approaches to obtain it: stochastic simulation algorithms, system of ODEs and quasi-steadystate solution. Additionally we use a large-system-size scaling to derive statistical measures of approximate distribution of the amount of free protein, such as the Fano factor. Intriguingly, we report that while in the absence of or in the excess of decoy binding sites the Fano factor is equal to one (suggestive of Poissonian fluctuations), in the intermediate regimes of moderate levels of binding sites the Fano factor is greater than one (suggestive of super-Poissonian fluctuations). We support and illustrate all of our results with numerical simulations.
Downloads
Published
Issue
Section
License
The journal Biomath is an open access journal. All published articles are immeditely available online and the respective DOI link activated. All articles can be access for free and no reader registration of any sort is required. No fees are charged to authors for article submission or processing. Online publications are funded through volunteer work, donations and grants.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).