Analysis of a virus-resistant HIV-1 model with behavior change in non-progressors

Authors

DOI:

https://doi.org/10.11145/j.biomath.2020.06.143

Keywords:

Resistance, Behavioural change, Partial & Total Abstinence, Goh-Volterra Lyapunov function.

Abstract

We develop a virus-resistant HIV-1 mathematical model with behavioural change in HIV-1 resistant non-progressors. The model hasВ both disease-free and endemic equilibrium points that are proved toВ be locally asymptotically stable depending on the value of the associated reproduction numbers. In both models, a non-linear Goh{Volterra Lyapunov function was used to prove that theВ endemic equilibrium point is globally asymptotically stable for specialВ case while the method of Castillo-Chavez was used to prove the globalВ asymptotic stability of the disease-free equilibrium point. In both theВ analytic and numerical results, this study shows that in the context ofВ resistance to HIV/AIDS, total abstinence can also play an importantВ role in protection against this notorious infectious disease.

References

Afassinou, K., Chirove, F., & Govinder, K. S. (2017). Pre-exposure prophylaxis and antiretroviral treatment interventions with drug resistance. Mathematical biosciences, 285, 92-101.

Altman, Lawrence K. (3 February 2000). "A New AIDS Mystery: Prostitutes Who Have Remained Immune". NYTimes. Retrieved 2015-01-20.

Blackwell, Tom (2012-02-13). "Blackwell on Health: Montreal researchers discover why some prostitutes evade HIV". National Post. Retrieved 2015-01-20. Public Health Agency of Canada have identified 15 proteins unique to those virus-free prostitutes.

Biasin, M., Clerici, M., & Piacentini, L. (2010). Innate immunity in resistance to HIV infection. The Journal of infectious diseases, 202(Supplement3), S361-S365.

Castillo-Chavez, C., & Song, B. (2004). Dynamical models of tuberculosis and their applications. Mathematical Biosciences & Engineering, 1(2), 361.

Cohen J. (2007). AIDS research. Did Merck's failed HIV vaccine cause harm? Science 318: 1048{1049.

Diekmann, O., Heesterbeek, J. A. P.,& Metz, J. A. (1990). On the denition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. Journal of mathematical biology, 28(4), 365-382.

Easterbrook PJ. Long-term non-progression in HIV infection: definitions and epidemiological issues. J Infect. 1999;38(2):71{73.

Elaine Mendus and Trudy Ring (2016): A genetic mutation that blocks HIV may hold the key to future treatment and, perhaps, a cure

Garcia-Calleja, J. M., Gouws, E., & Ghys, P. D. (2006). National population based HIV prevalence surveys in sub-Saharan Africa: results and implications for HIV and AIDS estimates. Sexually transmitted infections, 82(suppl 3), iii64-iii70.

Huo, H. F., Chen, R., & Wang, X. Y. (2016). Modelling and stability of HIV/AIDS epidemic model with treatment. Applied Mathematical Modelling, 40(13-14), 6550-6559.

Jesse Green (2014-06-13). "The Man Who Was Immune to AIDS". NYMag.com. Retrieved 2015-01-20.

Julia Paoli. HIV Resistant Mutation. Available on https://www.nature.com/scitable/blog/viruses101/hiv resistant mutation/?isForcedMobile=Y

LaSalle JP. The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics. SIAM: Philadelphia, 1976.

Maanvi Singh (21 September 2013). "In Life, Man Immune To HIV Helped Scientists Fight Virus". NPR.org. Retrieved 2015-01-20.

Marmor, M., Hertzmark, K., Thomas, S. M., Halkitis, P. N., & Vogler, M. (2006). Resistance to HIV infection. Journal of urban health, 83(1), 5-17.

Naresh, R., Tripathi, A. and Sharma, D. (2009). Modelling and Analysis of the Spread of AIDS Epidemic with Immigration of HIV Infectives. Mathematical and Computer Modelling , 49, 880-892. https://doi.org/10.1016/j.mcm.2008.09.013

Okosun, K. O., Makinde, O. D., & Takaidza, I. (2013). Impact of optimal control on the treatment of HIV/AIDS and screening of unaware infectives. Applied Mathematical Modelling, 37(6), 3802-3820.

Padian NS, van der Straten A, Ramjee G, Chipato T, de Bruyn G, et al.(2007). Diaphragm and lubricant gel for prevention of HIV acquisition in southern African women: a randomised controlled trial. Lancet 370: 251-261.

Paxton, W. A., Martin, S. R., Tse, D., O'Brien, T. R., Skurnick, J., VanDevanter, N. L., ... & Koup, R. A. (1996). Relative resistance to HIV{1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high{risk sexual exposures. Nature medicine, 2(4), 412.

Perelson, A. S., & Nelson, P. W. (1999). Mathematical analysis of HIV-1 dynamics in vivo. SIAM review, 41(1), 3-44.

Ramjee G, Govinden R, Morar NS, Mbewu A (2007). South Africa's experience of the closure of the cellulose sulphate microbicide trial. PLoS Med 4: e235.

Samson, M., Libert, F., Doranz, B. J., Rucker, J., Liesnard, C., Farber, C. M., ... & Muyldermans, G. (1996). Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature, 382(6593), 722.

Sharomi, O., & Gumel, A. B. (2008). Dynamical analysis of a multi-strain model of HIV in the presence of antiretro-viral drugs. Journal of Biological Dynamics, 2(3), 323-345.

Silva, C. J., & Torres, D. F. (2017). Global stability for a HIV/AIDS model. arXiv preprint arXiv:1704.05806.

Tripathi, A., Naresh, R., Tchuenche, J.M. and Sharma, D. (2013). Modeling the Spread of HIV-AIDS with Infective Immigrants and Time Delay. International Journal of Nonlinear Science , 16, 313-322.

UNAIDS. AIDS epidemic update. Technical report, 2009. http://www.unaids.org/en/KnowledgeCentre/HIV Data/EpiUpdate/EpiUpdArchive/2009/default.asp.

University of Minnesota (2014). "Why some people may be immune to HIV-1: Clues." ScienceDaily. ScienceDaily, 20 November 2014. www.sciencedaily.com/releases/2014/11/141120141750.htm.

Van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical biosciences, 180(1-2), 29-48.

Downloads

Published

2020-08-08

Issue

Section

Original Articles