Mathematical Modelling of HIV-HCV Co-infection Dynamics in Presence of HIV Therapy

Authors

  • Edison Mayanja Department of Mathematics, Makerere University, Kampala, Uganda
  • Livingstone S. Luboobi Independent Researcher, C/O Department of Mathematics, Makerere University, Kampala, Uganda
  • Juma Kasozi Department of Mathematics, Makerere University, Kampala, Uganda
  • Rebecca N. Nsubuga Independent Researcher, Kampala, Uganda

DOI:

https://doi.org/10.55630/j.biomath.2022.07.158

Keywords:

HIV/AIDS, HCV, co-infection, reproduction number, sensitivity analysis, therapy

Abstract

In this work, we formulated and analysed a deterministic model to study the HIV-HCV co-infection dynamics in presence of HIV therapy. The HCV chronic stage was split into two periods: the period before and the period after onset of cirrhosis. This was done because the HCV chronic stage of infection is long, asymptomatic and infectious. The effective reproduction numbers, one of our outcome measures, were computed using the next generation matrix method. Numerical simulations were performed to support the analytical results from the model. The different parameters in the model were subjected to a sensitivity analysis to determine their relative importance on the HIV-HCV co-infection dynamics. The results indicated that both HIV and HCV infections enhance each other; and in the long run, increasing the rates at which people are put on HIV treatment reduces the prevalence of HCV in the community; however, it increases the prevalence of HIV. Therefore, there should be increased safer sexual behaviour campaigns among individuals on HIV treatment.

Downloads

Published

2022-08-11

Issue

Section

Original Articles