Dynamic simulation and steady-state computation of 3D physiologically structured population models
DOI:
https://doi.org/10.11145/bmc.2017.12.237Abstract
The PSP modelling approach allows you to model biological/pharmaceutical behaviour by combining micro-scale ordinary differential equation (ODE) models with macro-scale ODE models and their bi-directional interaction. E.g.: based on the model of a single cell, billions of cells can be simulated to get the response of an entire organ (also incorporating the organ to cell reaction). The PSP approach allows to simulate this in a mathematically efficient way by characterising different cells by a set of physiologically relevant quantities [2], [3]. Our framework is capable of taking into account up to 3 physiological parameters resulting in a 3D structure for which a partial differential equation (PDE) should be solved. We achieve considerable speed-up by using a semi-Lagrangian PDE solver that allows big stable time stepping. Combining this with a low level C-language implementation, we achieve exceptional efficient usage of the computing processing unit (CPU). Furthermore we accelerate the computation of the steady-state by using a Newton-Krylov method. For ease of use, a PSP description language is constructed to allow straightforward input of different models. The simulator should empower future computational/mathematical biologists to create and evaluate more detailed models than currently is common practice.Downloads
Published
Issue
Section
License
The journal Biomath Communications is an open access journal. All published articles are immeditely available online and the respective DOI link activated. All articles can be access for free and no reader registration of any sort is required. No fees are charged to authors for article submission or processing. Online publications are funded through volunteer work, donations and grants.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).